МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

КЫРГЫЗСКИЙ НАЦИОНАЛЬНЫЙ АРГАРНЫЙ УНИВЕРСИТЕТ им. К.И. СКРЯБИНА

ДИССЕРТАЦИОННЫЙ СОВЕТ К 06.10.407

На правах рукописи УДК 626.823.6.8

БАТЫКОВА АЙНУРА ЖАПАРБЕКОВНА

СОВЕРШЕНСТВОВАНИЕ КОНСТРУКЦИИ ВОДОМЕРОВ ТИПА «ВОДОСЛИВ С ТОНКОЙ СТЕНКОЙ» ДЛЯ КАНАЛОВ МЕЛИОРАТИВНЫХ СИСТЕМ

Специальность: 06.01.02 – Мелиорация, рекультивация и охрана земель

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Кыргызском научно-исследовательском институте ирригации

Научный руководитель: кандидат технических наук, Заслуженный

изобретатель Киргизской ССР,

изобретатель СССР, профессор

Сатаркулов С.С.

Официальные оппоненты: доктор технических наук,

профессор Атаманова О.В.

кандидат технических наук,

доцент Аджыгулова Г.С.

Ведущая организация: Таразский Государственный

Университет им. М.Х. Дулати

Защита состоится « 8 » декабря 2011года, в 14 часов на заседании диссертационного совета К 06.10.407 по защите кандидатских диссертаций при Кыргызском национальном аграрном университете им. К.И.Скрябина по адресу: 720005 г. Бишкек, ул. Медерова,68. Тел.: (996-312) 54-52-10, факс (996-312) 54-05-45, e-mail: knau-info@mail.ru

С диссертацией можно ознакомиться в библиотеке Кыргызского национального аграрного университета им. К.И.Скрябина по адресу:

г. Бишкек, ул. Медерова, 68

Автореферат разослан « 2 » ноября 2011 г.

Ученый секретарь диссертационного совета, к.т.н., доцент

У.Т. Жусупов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Территория Кыргызской Актуальность диссертации. темы Республики (КР) относится к аридной зоне, поэтому очень важно рационально использовать водные ресурсы страны. Они материальными ценностями, а потому требуют бережного к ним отношения их использования. Учет воды является важнейшим экономного мероприятием организационно-техническим эксплуатационной гидромелиоративных систем. На мелиоративных системах республики учет воды осуществляется водомерными сооружениями: фиксированное русло, водосливы с тонкой стенкой, лотки (Вентури, Паршалла, САНИИРИ, с короткой горловиной) и другие (пороги, тарированные объекты). При этом количество водомеров типа фиксированное русло составляет 68%, а водослив с тонкой стенкой-25%. Остальные водомеры (7%) построены в виде водомерные сооружений. экспериментальных Многие сооружения ирригационной системы КР работают в сложных эксплуатационных условиях. Введенная в республике система платного водопользования требует организации учета воды на основе применения водомерных сооружений, точно измеряющих расходы воды, положительно И характеризуемых по технико-экономическим показателям. Лучше других требованиям отвечают водомеры водосливами, c стандартизованы и не требуют проведения градуировочных работ. Кроме того, они обеспечивают измерение расходы воды с погрешностью, не превышающей 5%. Наравне с положительными показателями, водомеры с водосливами имеют ряд недостатков, к числу которых относятся следующие:

- нарушение свободного режима истечения через водосливы из-за образования подпора воды со стороны нижнего бъефа сооружений;
- отложение наносов перед водосливами и трудность промывки их в нижний бьеф сооружений;
- отсутствие общепринятой зависимости для определения пропускной способности прямоугольных водосливов.

Устранение этих недостатков откроет перспективу для широкого внедрения водомеров с водосливами. Водослив с прямоугольным сечением до сих пор не был внедрен на мелиоративных системах республики.

При платном водопользовании, все имеющиеся водомерные сооружения (кроме балансовых) стали коммерческими. При такой ситуации устранение недостатков водомеров с водосливами становится актуальной задачей.

Связь темы диссертации с научными темами и программами.

Работа выполнена в рамках перспективных научно-исследовательских программ Департамента водного хозяйства при Министерстве сельского,

водного хозяйства и перерабатывающей промышленности (ДВХ МСВХ и ПП) КР на 2000-2010гг:

- -проект Всемирного Банка (ВБ) «Реабилитация ирригационных систем КР»;
- -проект Азиатского Банка Развития (АБР) «Внутрихозяйственное орошение» по программе «Водоснабжение и санитария».
- **Цель и задачи исследования.** Цель работы заключалась в совершенствовании конструкций водомеров с водосливами для улучшения условий их работы. Для достижения этой цели были рассмотрены следующие задачи:
- -сбор материалов из литературных источников по вопросам разработки, проектирования, строительства и эксплуатации водомерных сооружений с водосливами;
- -обследование эксплуатационных показателей действующих сооружений, построенных на межхозяйственных и внутрихозяйственных каналах, анализ их достоинств и недостатков;
- -уточнение требований, предъявляемых к водомерным сооружениям с водосливами;
- -усовершенствование компоновок и конструкций сооружений;
- -разработка рекомендаций по компоновке, конструированию и гидравлическому расчету пропускной способности разработанных сооружений, с изучением эксплуатационных их показателей.

Научная новизна полученных результатов:

- разработаны уточненные требования, предъявляемые к водомерам с водосливами;
- получены теоретические зависимости для уточнения коэффициента расхода и определения пропускной способности водомера с прямоугольным водосливом;
- разработаны усовершенствованные компоновки и конструкции сооружений с водосливами;
- разработаны рекомендации по конструированию и гидравлическому расчету усовершенствованных конструкций водомеров с водосливами;

Практическая значимость полученных результатов. Применение новых и усовершенствованных конструкций сооружений, с рекомендациями по компоновке, конструированию и гидравлическому расчету водомеров позволяет:

- шире применять водомерные сооружения с водосливами для измерения расходов воды на мелиоративных (внутрихозяйственных и частично межхозяйственных) каналах:
- повысить надежности водоучета на мелиоративных системах;
- упростить эксплуатацию водомеров с водосливами;
- осуществить промывку наносов из верхнего бьефа в нижний бьеф потоком воды;
- повысить экономическую эффективность водоучета на мелиоративной системе.

Экономическая значимость и реализация результатов исследований. Результаты исследований использованы:

- при создании (путем реконструкции существующих сооружений) тринадцати экспериментальных водомеров с прямоугольными водосливами. Из тринадцати построенных сооружений: 4 водослива с фиксированным порогом, 7 водосливов с регулируемой высотой порога, 2 затвора водомера с регулиремой высотой порогов водосливов. Имеются соответствующие Акты внедрения.
- внедрение результатов исследований осуществлено в основном на мелиоративных системах в Чуйской и Таласской областях, и все они прошли государственную метрологическую аттестацию;.
- при разработке рекомендации по наращиванию высоты порогов водосливов на 15 водомерных сооружениях в пределах от 10 до 30 см и их реализации;
- при разработке рекомендаций по компоновке, конструированию и гидравлическому расчету усовершенствованных и новых водомерных сооружений с водосливами;

Экономическая эффективность от внедрения разработанных сооружений составляет около 25 тысяч сом на одно сооружение, в зависимости от пропускной способности водомера. Годовая экономическая эффективность для 13ти экспериментальных сооружений, в среднем, составляет 320 тыс. сом и улучшаться условия эксплуатации водомеров;

Основные положения диссертации, выносимые на защиту:

- уточненные требования, предъявляемые к водомерам с водосливами;
- усовершенствованные и новые конструкции водомеров с водосливами;
- теоретические зависимости коэффициента расхода для определения пропускной способности водомера с прямоугольным водосливом;
- рекомендации по компоновке и конструированию усовершенствованных и новых конструкций сооружений;

Личный вклад соискателя. На основе анализа научных материалов автором сформулированы цели и задачи исследований, намечены основные пути их реализации. Автор самостоятельно участвовала в планировании и проведении натурных и теоретических исследований, совершенствовании конструкций сооружений и разработке рекомендаций по их компоновке и гидравлическому расчету.

Апробации результатов диссертации. Результаты исследований докладывались на следующих научно-технических и практических конференциях:

- -международная научно-практическая конференция, посвященная 70-летию со дня образования КАУ им. К.И. Скрябина. Бишкек, 2003г;
- заседания научно-технического Совета ДВХ в 2002-2008гг;
- -международная научно-практическая конференция в честь 75-летие КАУ им. К.И. Скрябина. Бишкек, 2008г;
- -научно-практическая конференция Казахского национального аграрного университета, Алматы, 2009г.

Публикации: опубликовано 12 научных работ, из них 2 в зарубежных изданиях; опубликованы 2 брошюры; имеются 3 Патента Кыргызской Республики на изобретения; 5 статей написаны единолично.

Структура и объем диссертации. Диссертационная работа состоит из введения, 6 глав, заключения, списка литературы, приложений. Она изложена на 135 страницах компьютерного текста, включает 44 иллюстрации, 25 таблиц, 6 приложений, в списке использованной литературы 110 наименований.

Автор выражает благодарность и признательность научному руководителю к.т.н., профессору С.С. Сатаркулову за внимание и помощь, оказанную при выполнении данной работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении изложены состояние проблемы, актуальность темы, цель, задачи и методика исследований, научная новизна работы, практическая ценность и защищаемые положения диссертации, реализация результатов исследований и апробация, публикация, структура и объем диссертации.

В первой главе диссертации приводятся краткие характеристики мелиоративных систем Кыргызской республики, оснащенности их водомерными сооружениями и условия работы последних на источниках орошения (реках) и каналах различного назначения.

В стране функционируют свыше 4000 мелиоративных систем, из которых около 40% имеют межхозяйственное и 60% - внутрихозяйственное значения. При этом инженерные мелиоративные системы составляют 40%, полуинженерные - 34% и не инженерные 26%. Площадь земель с мелиоративной сетью составляет свыше 1236 тыс. га.

Трудности, возникаемые при эксплуатации водомерных сооружений, мелиоративных системах республики, построенных на источников орошения (pek) самих мелиоративных особенностями И каналов. Так, сток рек в годовом разрезе распределяется крайне неравномерно (половодье начиняется в марте-апреле и заканчивается в сентябре); по территории республики часто проходят сели, вызванные в основном ливнями (они составляют 80-85% от числа проанализированных); для рек страны характерны значительные колебания расходов воды (в 1,5-2,0 раза) в течение суток; гидравлические элементы водного потока в реках меняются не только по их длине, но и в зависимости от проходящих по ним расходов воды (уклоны рек 0.05 - 0.01 и менее, глубины потока 0.1 - 1.2м, скорости течения

0,2 — 3,5м/с, числа Фруда редко превышает 1, что является результатом гашения скорости потока повышенной шереховатостью ложа русел рек); наносы формируются, в основном, на горных и предгорных участках рек, при этом расходы взвешенных и влекомых наносов, а также их фракционный состав (крупность) изменяется не только по длине водотоков, но и по проходящим по ним расходам воды.

Все эти особенности, характерные источникам орошения (рекам), накладывают определенный отпечаток на режимы работы мелиоративных каналов и гидротехнических (в том числе водомерных) сооружений на них.

Межхозяйственные и внутрихозяйственные каналы республики характеризуются широким диапазоном:

- изменения параметров каналов и их форм поперечного сечения;
- измеряемых уровней воды, скоростей течения потока и расходов воды;
- изменения параметров кинетичности (бурности) потоков воды в каналах.

Так, параметры каналов характеризуются следующими данными: ширина 0,4-2,0м, заложения откосов 0-1,5, уклоны дна 0,001-0,05, формы поперечного сечения — прямоугольная, трапецеидальная, параболическая и составная. Гидравлические характеристики протекающих по этим каналом потоков воды (максимальные их значения): глубина 0,3-1,0м, скорость 0,5-8,0м/с, параметр кинетичности потока Fr=0,1-5,0.

Такими положениями осложняются не только сам процесс измерения расходов воды, но и выбор средств для учета воды. Качественный учет воды на каналах мелиоративных систем республики усугубляется наличием в потоке воды не только взвешенных, но и влекомых наносов.

В настоящее время мелиоративные каналы республики оснащены в основном водомерными сооружениями типов фиксированное русло и водосливы с тонкой стенкой, при этом применяются водосливы только трапецеидального сечения. Водосливов с прямоугольным поперечным сечением, как таковых, нет.

Во второй главе диссертации приведены уточненные требования, предъявляемые к водомерам с водосливами, и результаты исследований пропускной способности водомера с прямоугольным водосливом.

Использование уточненных требований, предъявляемых к водомерам при их проектировании, строительстве и экслуатации, позволит повысить точность измеряемых расходов воды и упростить экслуатацию самих сооружений. Прямоугольный водослив может применяться как без бокового сжатия (рис.1а), когда b=B, так и с боковым сжатием (рис.1б), когда b< B.

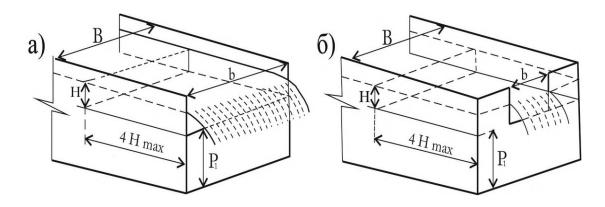


Рис. 1 Схемы прямоугольного водослива с тонкой стенкой. a) — без бокового сжатия (b=B); б) — с боковым сжатием (b<B)

Кроме того, истечение воды через водослив должно быть свободным (рис.2).

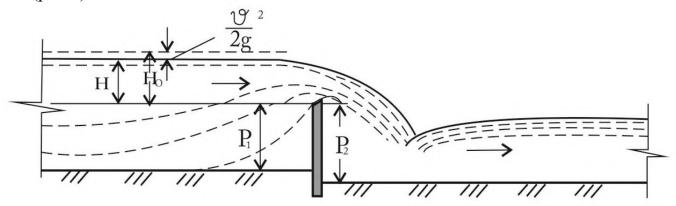


Рис. 2 Схема истечения потока через прямоугольный водослив: свободный режим истечения

Расход истечения воды через водослив определяется по формуле:

$$Q=m_{\rm B} b\sqrt{2g} H^{3/2}, M^3/c$$
 (1)

где тв – коэффициент расхода водослива-водомера.

Формула (1) является основной формулой для определения расхода воды, проходящей через водосливы всех видов и, в том числе, через прямоугольный водослив.

Изучению коэффициента расхода прямоугольного водослива посвятили свои исследования Г. Базен, Эгли, Ребока, Р.Р. Чугаев, М.Д. Чертоусов и другие ученые и инженера.

В действующем нормативном документе МИ 2122-90 (Расход жидкости в открытых потоках. Методика выполнения измерений при

помощи стандартных водосливов и лотков. Казань. 1991.-73с.) пропускную способность прямоугольного водослива рекомендует определять по формуле:

$$Q = \frac{2}{3} m_{\rm H} b \sqrt{2g} H^{3/2}, \, m^3/c$$
 (2)

где $m_{\rm H}$ - коэффициент расхода (по нормативному документу), определяемый по формуле:

 $m_{H} = a + a' \frac{H}{P_{1}} \tag{3}$

где а и а¹ – поправочные множители, учитывающие влияние бокового сжатия на коффициент расхода.

В работе коэффициент m_H в формуле (3) назван «приведенным» коэффициентом расхода поскольку с одной стороны, он не отражает истинное значение коэффициента расхода прямоугольного водослива и, с другой, - содержит поправочные множители, благодаря которым формулы (1) и (2) дают одинаковые результаты.

В МИ 2122-90 значения поправочных множителей **a** и **a** приведены в табличной форме и они при различных b/B определяются линейной интерполяцией. В этом случае не возможно избежать ошибок.

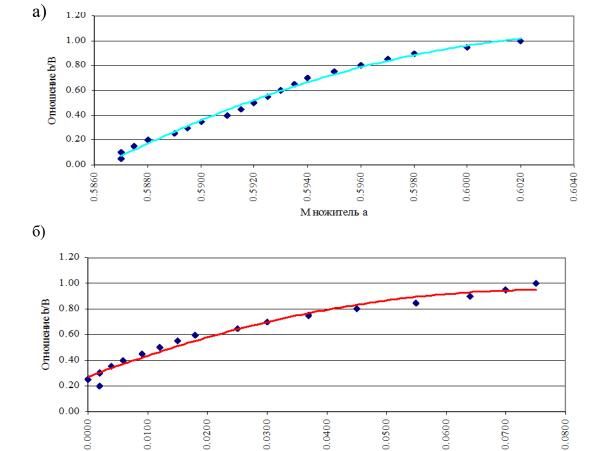


Рис. 3 (а, б) - Зависимость поправочных множителей в формуле (3) от параметра b/B

М ножитель а

Поэтому, в целях повышения точности определения значений поправочных множителей, нами предложены графические зависимости a=f (b/B) (рис. 3a) и a'=f(b/B) (рис. 3б), которыми следует пользоваться при определении «приведенного» коэффициента расхода прямоугольного водослива по формуле (3). На рисунке 3 приведены графики зависимостей поправочных множителей а и a' от соотношений b/B и определены уравнения зависимостей $y=0.0089x^2+0.005x+0.5869$ и $y'=0.1234x^2-0.0506x+0.0062$ и получены величины аппроксимации $R^2=0.985$ и $R^2=0.996$ и линии трендов. Уравнения зависимостей обозначим в виде выражений:

$$a=0,0089(\frac{b}{B})^2+0,005(\frac{b}{B})+0,5869$$
(4)

$$a'=0,1234(\frac{b}{R})^2-0,0506(\frac{b}{R})+0,0062$$
 (5)

Полученные теоретическими расчетами уточненные выражения (4) и (5) рекомендуется использовать для расчетов коэффициента расхода прямоугольного водослива.

В третьей главе на основе анализа технологических характеристик гидропостов рассмотрена компоновочные схемы размещения водомеров с водосливами на участках водораспределения. Приведены результаты исследований эксплуатационных показателей сооружений, построенных на мелиоративных системах Кыргызской Республики.

Результаты натурных обследований значительного числа гидропостов с водосливами подтверждаются приведенными в диссертации фотографиями. Параметры водосливов действующих сооружений характеризуются следующими данными: поперечное сечение водосливов трапецеидальное; ширина по дну 0.5-3.0м; высота порога водосливов 0.2-1.2м; расходы воды 0.5-3.0 м $^3/c$.

Проведенные исследования показали, что при строительстве водомеров с учетом предъявляемых к ним требованиям, такие сооружения работают удовлетворительно и принимаются в качестве средств для измерения расходов воды.

Однако возможность измерения расходов воды на гидропостах, построенных без учета подтопления их со стороны нижнего бьефа, приводит к нарушению их характеристик и проблемам в процессе эксплуатации.

Подпоры с нижнего бъефа возникают, как правило, в результате:

- низкой посадки самого водослива при строительстве;
- малой высоты порога водослива;
- заиление и зарастания отводящих участков каналов;
- влияние режима работы водораспределителей, размещенных в нижнем бьефе водомеров.

Водомеры с водосливами, работающие при подтопленном режиме истечения, не используются в качестве средств для измерения расходов воды, а если и используются, то расходы воды определяются «приблизительно» и «на глаз», что недопустимо в условиях платного водопользования.

К факторам, снижающим возможности измерения расходов воды, относятся также:

- близкое размещение водомеров к водовыпускам, размещенным в верхнем бьефе (рис. 4);
- заиление наносами верхнего бьефа сооружений и необходимость ручной его очистки;
- отсутсвие уравномерных колодцев на некоторых действующих водомерах;
- примитивно выполненные в диафрагме сооружений отверстия (рис. 4) не обеспечивают промывку наносов. Эти отверстия в период вегетации часто не закрываются, чем увеличивается количество неучтенных расходов воды.

Устранение вышеуказанных недостатков водомера с водосливом открывает перспективу для широкого его внедрения на каналах мелиоративных систем. Следует отметить, что применение водосливов-водомеров целесообразно на распределительных каналах с уклонами дна меньше критических $i \le i_{kp}$ и параметром кинетичного потока в таких каналах $Fr \le 1$, а режим течения спокойный.

Рис. 4 Оросительная система ЗБЧК. Гидропост на P-23-2: Водослив находится вблизи к трубчатому водовыпуску и имеет примитивное наносопромывное отверстие

В четвертой главе уточнены задачи совершенствования водомеров и приведены усовершенствованные их конструкции. Основной принцип устранения имеющихся недостатков в работе водомеров заключается в частичной, а не коренной реконструкции. Во избежания подтопления с ЧУБУВХ бьефа на 15 сооружениях подчинения нижнего рекомендовано их пороги наращивать на высоту 0,1-0,5м. Данные рекомендации получили применение на семи сооружениях.

Для обеспечения качественной промывки наносов из верхнего бьефа сооружения, разработан водомер (рис.5), состоящий из подводящего 1 и отводящего 2 участков канала, диафрагмы 3, водослива 4, наносопромывного отверстия 5, береговых стенков 6 для запорного устройства (щитка) 7, причем это устройство размещено в конце наносопромывного отверстия 5.

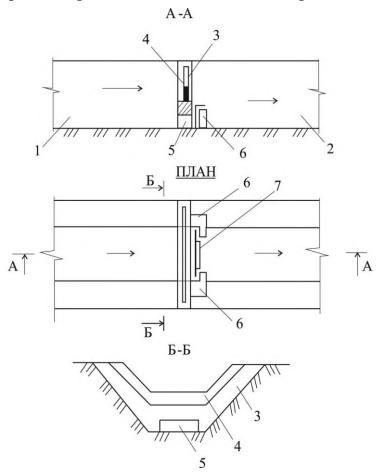


Рис. 5 Схема усовершенствованного водомерного сооружения со щитом в конце наносопромывного отверстия: 1, 2-подводящий и отводящий каналы, 3-диафрагма, 4-водослив, 5-наносопромывное отверстие, 6-береговые стенки, 7-щит.

До заиления верхнего бъефа наносами наносопромывное отверстие 5 перекрывается щитком 7. При заилении его запорное устройство открывается и проводится промывка наносов. К преимуществам данного сооружения относится обеспечение непрерывной водоподачи при полной промывке наносов. На эту конструкцию получен Патент №1397 КР на изобретения.

Сооружение на рисунке 5 разработано применительно к каналам трапецеидального сечения. Применительно к каналам прямоугольного сечения рекомендуется следующее:

- а) водослив выполнить съемным, разместив его по схеме на рис. 6а;
- б) выполнив порог водослива регулируемым по высоте, для чего за водосливом 1 предусмотрен щиток 3 (рис.6б). Щит 3 подвижный, благодаря чему обеспечиваются:

- регулирование высотой порога водослива во избежение подпора со стороны нижнего бъефа;
- промывка наносов из верхнего бъефа при поднятых водослива 1 и щитка 3.

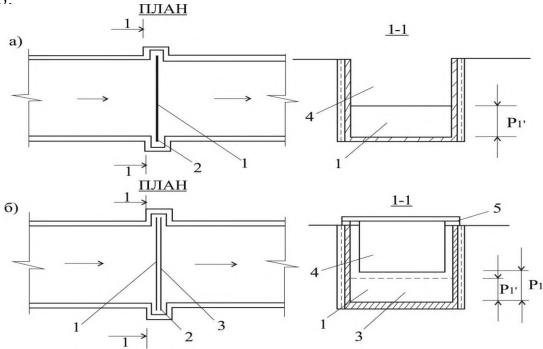


Рис.6 Схемы водомерного сооружения со съемным водосливом (а) и с регулируемой высотой порога водослива (б) (канал прямоугольного сечения): 1-водослив, 2-паз, 3-щит, 4-водопропускное отверстие, 5-ручной привод.

В работе даны также решения по применению предложенных на рис.6 рекомендаций применительно к каналам с трапецеидальным сечением (рис.7).

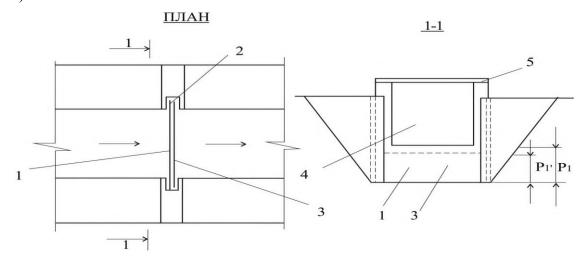


Рис. 7 Схема водомерного сооружения с регулируемой высотой порога водослива (канал трапецеидального сечения)

Данные, представленные на рис.8, использованы при разработке водомерного сооружения на рис.9. Для гашения кинетической энергии потока и тем самым создания условий для учета воды применены колодец-гаститель 2 и гасительное устройство 11, создающие благоприятные условия (осуществив расщепление потока на мелкие струи) для гашения кинетической энергии потока.

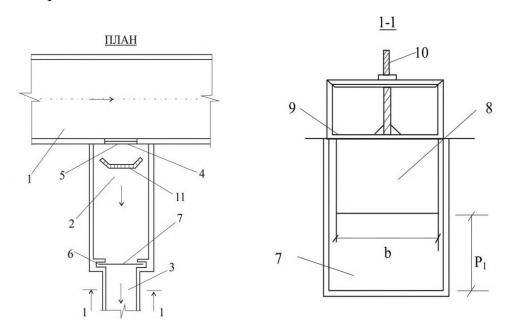


Рис. 8 Схема водомерного сооружения с колодцем-гасителем и со щитом-водомером: 1-канал, 2-колодец гаситель, 3-отводящий канал, 4-отверстие, 5-затвор, 6-пазы, 7-щит, 8-водослив, 9-ребро жесткости,10-подъемное устройство, 11-гаситель энергии.

Рис. 9 Затвор-водомер на Р-7-13 прямой системы Ат-Башинского магистрального канала.

Опыт эксплуатации водомеров с водосливами показывает, что поток воды в нижнем бьефе сильно пульсирует. При таком режиме затрудняется процесс измерения уровня воды в нижнем уровнемерном колодце. Для упрощения этого процесса предложено на конце соединительной (водотока с уравномерным колодцем) трубки предусмотреть запорное устройство закрывается соединительная клапанного которым измерении уровня воды В уровномерном колодце водомера. При необходимости такое запорное устройство может применяться и в верхнем уровномерном колодце сооружения.

В пятой главе диссертации приведены результаты внедрения и натурных исследований усовершенствованных конструкций водомеров с водосливами. Подготовительные работы заключались в следующем:

- исследование действующих водомеров с изучением эксплуатационных их показателей;
- выявление объектов для внедрения на них экспериментальных водомеров;
- внедрение экспериментальных сооружений с улучшенными конструкциями водомеров;
- гидравлический расчет экспериментальных сооружений и определение их параметров.
- Чуйской Таласской областях были построены 13 экспериментальных сооружений с прямоугольными водосливами, в том числе 4 водослива с фиксированным порогом, 7 водосливов с регулируемой высотой порога, 2 затвора-водомера с регулиремой высотой порогов водосливов. Параметры водосливов характеризуются следующими данными: ширина 1,0-2,97м, высота 0,4-0,7м, высота порога 0,1-0,7м, максимальная 0,7-1,4 m³/c. Изучение пропускная способность эксплуатационных показателей экспериментальных сооружений показало следующее:
- организован учет водных ресурсов на 13 гидропостах, с поргешностью не превышающей 5%;
- •водомеры с фиксированным порогом водослива не заиливались из-за подачи на них чистой воды. На других сооружениях наблюдалось отложение наносов. Но они легко промывались потоком воды при поднятых водослива, щитка и затвора-водомера;

•водомеры с регулируемой высотой порога водосливов позволяет избежать подтопления с нижнего бьефа, что позволяет измерять расходы с допустимой погрешностью.

Детальные натурные исследования проводились на водомерном сооружении на канале P-9 прямой системы ЗБЧК, где внедрен водомер с прямоугольным неизменным порогом водослива.

Получена расходная характеристика водослива, приведенная в таблице 1.

Таблица 1-Координатная таблица расходов воды водомера на Р-9 из ЗБЧК

Напор,м	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,10	0,164	0,190	0,220	0,250	0,280	0,305	0,330	0,365	0,400	0,440
0,20	0,470	0,500	0,545	0,590	0,630	0,668	0,710	0,750	0,795	0,840
0,30	0,878	0,925	0,970	1,020	1,080	1,125	1,160	1,210	1,260	1,310

Натурные исследования проведены и на внедренном на канале P-4 системы Большого Таласского Канала (БТК). Координатная таблица расходов для водомера с постоянным порогом на P-4 приведена в таблице 2.

Таблица 2-Координатная таблица расходов воды водомера на Р-4 из БТК

Напор,м	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	-	-	-	0,010	0,016	0,023	0,031	0,039	0,048	0,057
0,10	0,067	0,077	0,088	0,100	0,112	0,124	0,137	0,150	0,164	0,178
0,20	0,198	0,208	0,223	0,239	0,225	0,272	0,288	0,306	0,323	0,342
0,30	0,360	0,378	0,397	0,417	0,437	0,457	-	-	-	-

Натурными исследованиями водомера со съемным водосливом, внедренным на канале P-7-13 прямо системы Атбашинского магистрального канала (AMK), установлены расходные характеристики предложенной конструкции, приведенные на рисунке 10.

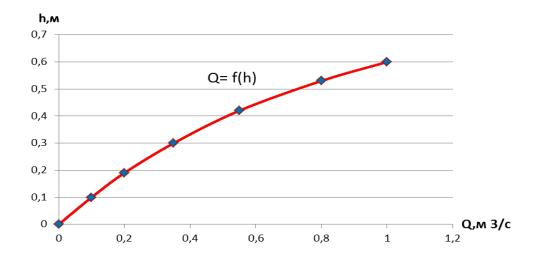


Рис.10 График пропускной способности водомера на Р-7-13 прямой системы Атбашинского магистрального канала (АМК).

Водомер с прямоугольным водосливом и реализуемой высотой порога внедрен на канале Новотроицкий системы Левобережного магистрального канала (ЛМК).

В работе приведены результаты натурных исследований затвораводомера с регулируемой высотой порога водосливов, внедренного на канале Совхоз-7 системы Левобережного магистрального канала (ЛМК).

Все построенные и исследованные сооружения обеспечивают требуемую точность водоучета и прошли метрологическую аттестацию.

В шестой главе приводятся рекомендации по компоновке и гидравлическому расчету пропускной способности усовершенствованных сооружений и экономическая эффективность от их внедрения.

Размещение щита на водомере на рис.5 в конце наносопромывного отверстия было продиктовано необходимостью невмешательства на гидравлику потока в верхнем бьефе. Длина наносопромывного отверстия принимается ℓ =(0,8-1,0) b_k , где b_k — ширина канала по дну. Его высота может назначаться, в зависимости от высоты порога водослива P_1 , в пределах 0,2-0,3м. или, еще лучше, как (0,6-0,8) P_1 .

При свободном режиме истечения из наносопромывного отверстия, пропускная способность сооружения определяется по формуле:

$$Q = \mu \ell a \sqrt{2gH_o}, \, M^3/c$$
 (6)

где ℓ , а – длина и высота наносопромывного отверстия, м;

H_o – напор, с учетом подходной скорости, м;

μ – коэффициент расхода, принимаемый равным 0,62.

Водосливы на разработанных сооружениях (рис.6,7 и 8) выполняются в виде щита и затвора — водомера, установив их в пазах в стенках водотоков.

Определение оптимальной высоты порога водослива оказалось многофакторным. Поэтому для решения этого вопроса было предложено водомер выполнить с регулируемой высотой порога водослива.

Ширина щита, устанавливаемого за водосливом, принимается как $(0,8-0,9)P_1$, что позволит без труда установить пороги водосливов на оптимальную высоту. Ширина колодца-гасителя водомера на рис.8 принимается:

$$B=(1,4-1,6)b$$
,

где b-ширина отводящего канала, а длина колодца гасителя:

$$L = (4-6) B$$
,

при этом чем больше расход, тем длиннее должен быть колодец-гаситель.

В состав разработанных сооружений входят два уровномерных колодца, размещаются они перед и за водосливом. На конце соединительной трубки во втором (нижнем) колодце устанавливается запорное устройство любой конструкции, в том числе клапанного типа.

Определена экономическая эффективность усовершенствованного водомерного сооружения. Она составляет около 25 тыс.сом на одно сооружение, в зависимости от пропускной способности водомера. Эти расчеты потверждены Актом внедрения, который приводится в диссертации.

Годовая экономическая эффективность для тринадцати экспериментальных сооружений, в среднем, составляет 320 тыс. сом. Кроме того улучшатся условия водоучета за счет устранения отрицательного влияния наносов, отложившихся в верхнем бьефе, и подпора с нижнего бьефа сооружения, гидравлической промывкой наносов достигается непрерывная водоподача водопользователям и увеличится объем полезно используемой воды.

ВЫВОДЫ И ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

На основе результатов проведенных исследований, направленных на усовершенствование конструкций водомерных сооружений на ирригационной сети можно сделать следующие выводы:

- 1. Водные ресурсы Кыргызской Республики требуют бережного отношения к ним и экономного их использования. Это особенно важно ввиду перехода к рыночным отношениям.
- 2. Учет водных ресурсов осуществляется при помощи свыше 4 тыс. водомерных сооружений, с различными их типами. Наиболее распространенными являются водомеры типа фиксированное русло (68%) и водосливы с тонкой стенкой (25%), остальные (7%) построены в виде экспериментальных сооружений.
- 3. Водомерные сооружения типа водослив с тонкой стенкой размещаются на внутрихозяйственных и межхозяйственных каналах с пропускной способностью не более 3м³/с. На оросительных каналах применяются только трапецеидальные водосливы.
- 4. Исследование пропускной способности прямоугольного водослива показало, что она может определяться как по формуле (1), так и по зависимости (2), так как они дают идентичные результаты. В последнем случае при определении «приведенного» коэффициента расхода по формуле (3) поправочные коэффициенты могут устанавливаться по уравнениям (4) и (5). Графики зависимостей для поправочных коэффициентов приведены на рисунке 3а,б.
- 5. Водомеры с трапецеидальными водосливами имеют недостатки, такие как наличие подпоров с нижнего бьефа, отложение наносов в верхнем бьефе и необходимость их ручной очистки. Эти недостатки были устранены за счет усовершенствования конструкций водомеров. Усовершенствование было применительно и к водомерам с прямоугольным водосливом. На разработанных сооружениях не только повысилась точность водоучета, но и упростились и улучшились условия их эксплуатации.
- 6. Разработаны усовершенствованные компоновки и конструкции сооружений с водосливами. Имеются Патенты КР на изобретения.
- 7. Разработанные водомеры внедрены на 13ти объектах. Натурные исследования эксплуатационных показателей экспериментальных сооружений дали положительные результаты. Водомеры прошли метрологическую аттестацию и приняты в качестве рабочих средств измерения расходов воды.
- 8. Согласно расчетам годовая экономическая эффективность усовершенствованных сооружений с учетом гидравлической промывки наносов и непрерывной подачей воды водопользователям составила 25 тысяч сом на одно сооружение. Ожидаемая экономическая эффективность для 13ти экспериментальных сооружений составляет 320 тыс. сом.

Основное содержание диссертации самостоятельно и в соавторстве опубликовано в следующих работах:

- 1. **Батыкова, А.Ж.** Совершенствование компоновок узла «вододелитель водомер» [Текст] / А.Ж. Батыкова // Водомерные сооружения и пути улучшения их работы / С.С.Сатаркулов, К.К.Бейшекеев, Х.М. Маллаев и др.-Бишкек: ПК «Переплетчик», 2000г.- разд.6. С.67-82.
- 2. **Батыкова, А.Ж.** О прямоугольном водосливе с тонкой стенкой [Текст] / А.Ж. Батыкова // Аграрная наука и образование Году Кыргызской государственности: сб.науч.тр., Вып.2, ч.4./ Кырг.аграр.ун-т.— Бишкек, 2003г.- С.78-83.
- 3. Водомерные сооружения для каналов и лотков [Текст] / [С.С. Сатаркулов, К.К. Бейшекеев, Х.М. Маллаев и др.]. Бишкек: ПК «Переплетчик», 2005.-260с.
- 4. **Батыкова, А.Ж.** Опыт применения прямоугольных водосливов с тонкой стенкой [Текст]: / С.С. Сатаркулов, А.Ж. Батыкова // Исследования, результаты / Казахский национальный аграрный университет. 2009.- №2. С. 201-206.
- 5. **Батыкова, А.Ж.** Опыт эксплуатации водомерных сооружений с колодцем-гасителем и водосливом [Текст]: / А.Ж. Батыкова // Исследования, результаты / Казахский национальный аграрный университет 2009.- №3. С.159-166.
- 6. **Батыкова, А.Ж.** О коэфициенте расхода прямоугольного водослива с тонкой стенкой [Текст] / А.Ж. Батыкова // Наука и новые технологии.- 2009. №6.— С.34-36.
- 7. **Батыкова, А.Ж.** К вопросу конструирования водомеров со специальными гасительными устройствами [Текст] / А.Ж. Батыкова // Вестник Кыргызского аграрного университета. 2009. №5 (16).— С.187-190.
- 8. **Батыкова, А.Ж.** К технико-экономическим показателям водомера с прямоугольным водосливом [Текст] / А.Ж. Батыкова // Известия ВУЗов.-2009.- №8. С.6-8.
- 9. **Батыкова, А.Ж.** К вопросу выбора конструкции водосливов водомерных сооружений [Текст]: / А.Ж. Батыкова // Наука и новые технологии.- 2009.- №8. С.9-14.
- 10.**Пред. патент 476 Кыргызской Республики, МПК**⁷ **E02 B13/10.** Водомерное сооружение [Текст] / Сатаркулов С.С., Батыкова А.Ж. 20000042.1; заявл.20.06.00; опубл. 01.10.01, Бюл. №9. 5с.:ил.
- 11.**Патент 512 Кыргызской Республики, МПК⁷ Е02 В13/00.** Водомерное сооружение для быстротечных каналов [Текст] / Сатаркулов С.С., Маллаев Х.М., Батыкова А.Ж. 20010017.1; заявл. 06.04.01; опубл. 28.06.02, Бюл. №6. 4с.: ил.
- 12.**Патент 1397 Кыргызской Республики, МПК⁷ Е02 В7/26.** Водомерное сооружение [Текст] / Сатаркулов С.С., Батыкова А.Ж. 20100041.1; заявл. 23.03.10; опубл. 31.10.11, Бюл. №10. 4с.: ил.

РЕЗЮМЕ

Батыкова Айнура Жапарбековна

Диссертация «Совершенствование конструкции водомеров типа «водослив с тонкой стенкой» для каналов мелиоративных систем» представлена на соискание ученой степени кандидата технических наук по специальности 06.01.02 – Мелиорация, рекультивация и охрана земель

Ключевые слова: мелиоративная система, каналы, водомерные сооружения, гидропосты, водосливы прямоугольного и трапецеидального поперечных сечений, наносы, свободный и подтопленный режимы, гидравлический расчет, промыв, измерение, щит, затвор.

Объект исследований: водомерные сооружения типа водослив с тонкой стенкой

Цель работы: Совершенствование конструкции водомеров с водосливами для улучшения условий их эксплуатации.

Методика исследований. Комплексная, включающая натурные исследования водных объектов.

Полученные результаты и их новизна: разработаны усовершенствованные и новые конструкции водомеров с водосливами; предложены теоретические исследования гидравлического расчета пропускной способности водомера с прямоугольным водосливом; созданы экспериментальные сооружения и изучены их работы; определены технико-экономические показатели разработанных водомеров с водосливами.

Рекомендации по использованию: усовершенствованные и новые водомеры; рекомендации по их конструированию и гидравлическому расчету;

Область применения: на внутрихозяственных и межхозяйственных каналах мелиоративных систем.

Speciel-

РЕЗЮМЕ

Батыкова Айнура Жапарбековна

«Мелиоративдик системалардын каналдары үчүн «жука дубалдуу суу куйма» тибиндеги суу өлчөгүчтүн конструкциясын өркүндөтүү» темасындагы диссертациясы 06.01.02 - Мелиорация, рекультивация жана жерлерди коргоо адистиги боюнча техникалык илимдердин кандидаты даражасын алуу үчүн сунушталган

Маанилүү сөздөр: мелиоративдик система, каналдар, суу өлчөөчү курулмалар, гидропосттор, төрт бурчтуу жана трапецеидалдык кесилиштеги суу куймалары, шилендилер, жай жана чөгөрүлгөн суу режимдери, гидравликалык эсеп, жуугуч, суу ченегич, тосмо, затвор.

Изилдөө объектиси: мелиоративдик системаларында колдонуучу суу ченөөчү «жука дубалдуу суу куйма» тибиндеги курулмалар.

Иштин максаты: суу куймалуу суу өлчөгүчтөрдү пайдалануу шарттарын жакшыртуу үчүн алардын конструкцияларын өркүндөтүү

Изилдөө ыкмасы: Суу объектилерин комплекстүү, накта шартта изилдөө.

Алынган жыйнтыктар жана алардын жаңылыгы: суу куймалуу суу өлчөгүчтөрдүн жаңы жана өркүндөтүүлгөн конструкциялары иштелип чыкты; төрт буруч суу куюлмалуу суу өткөргүчтөрдүн жөндөмдүүлүгүн гидравликалык эсебинин теориялык изилдөөлөрү сунушталды; эсперименталдык курулмалар курулуп жана алардын иштөөсү изилденилди; иштелип чыккан суу куймалардын техникалык-экономикалык көрсөткүчтөрү аныкталды.

Пайдалануу боюнча кеңештер: өркүндөтүлгөн жана жаңы суу өлчөгүчтөр; алардын конструкциясы жана гидравликалык эсептери боюнча рекомендациялар.

Колдонуу тармагы: мелиоративдик системалардын ички жана сырткы чарба аралык каналдары.

Speciel-

RESUME

Batykova Ainura Zhaparbekovna

Dissertation «Improvement of design of thin-wall spillway water meters installed in melioration systems» is submitted for scientific degree of candidate of technical sciences, specialties 06.01.02 – Melioration, recultivation and protection of land

Keywords: melioration system, canal, water metering station, gauging, water spillways with rectangular and trapezoid cross-sections, aggradations, free and waterlog mode, hydraulic calculation, washout, measurement, shield, shutter.

The object of research: thin-wall water measuring stations in melioration systems.

Objective: Improving the design of the spillway with water meters to improve their operating conditions.

Research method: A comprehensive method which includes full-scale studies of water objects.

The results obtained and their novelty: the improved and new designs of water meters with spillways were developed; the theoretical research of the hydraulic calculation of a water meter capacity with a rectangular spillway was proposed; the experimental stations were set up and their functioning was studied; the technical and economic indicators of the developed water meters with spillways were defined.

Recommendations for use: upgrades and new water meters; recommendations for their design and hydraulic calculations;

Speciel-

Scope of application: on-farm and off-farm melioration systems canals.

БАТЫКОВА АЙНУРА ЖАПАРБЕКОВНА

СОВЕРШЕНСТВОВАНИЕ КОНСТРУКЦИИ ВОДОМЕРОВ ТИПА «ВОДОСЛИВ С ТОНКОЙ СТЕНКОЙ» ДЛЯ КАНАЛОВ МЕЛИОРАТИВНЫХ СИСТЕМ

Автореферат диссертации

Объем 1,5 уч.изд.л. Тираж 100 экз. Заказ № 147

Типография ОсОО «Алтын принт» 720000, г. Бишкек, ул. Орозбекова, 44 Тел.: (+996 312) 62-13-10 e-mail: <u>romass@front.ru</u>