ИНСТИТУТ СЕЙСМОЛОГИИ НАЦИОНАЛЬНОЙ АКАДЕМИЯ НАУК КЫРГЫЗСКОЙ РЕСПУБЛИКИ

На правах рукописи УДК 551.242. (551.43)

Рахмединов Эркин Эмилбекович

Оценка сейсмической опасности восточной части Нарынской впадины

25.00.01 - Общая и региональная геология

Диссертация на соискание ученой степени кандидата геолого-минералогических наук

> **Научный руководитель** Доктор геологоминералогических наук, профессор, членкорреспондент НАН КР Абдрахматов Канатбек Ермекович

СОДЕРЖАНИЕ

Перечень сокрашений и обозначений
Введение5
ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ В ОБЛАСТИ НЕОТЕКТОНИКИ
ИЗУЧАЕМОГО РЕГИОНА 14
1.1.История развития доновейшей геологической структуры региона14
1.2.Основных особенности новейшей и современной тектоники Центрального
Тянь-Шаня18
1.3.Современная сейсмичность региона
ГЛАВА 2. МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ27
2.1. Центрально-Нарынский разлом
2.1.1. Положение Центрально-Нарынского разлома в пределах территории
г. Нарын
2.2. Кажыртинский разлом
2.3. Нуратооский разлом
ГЛАВА 3. ОЦЕНКА СЕЙСМИЧЕСКОЙ ОПАСНОСТИ77
3.1.Детальные траншейные исследования в целях оценки повторяемости
сильных землетрясений79
3.1.1. Участок Малый Нарын79
3.1.2. Участок Университет Ага-Хан94
3.2.Строение Нуратооского разлома, расположенного севернее Верхне-
Нарынского каскада ГЭС103
3.3.Оценка максимальной магнитуды возможных сильных
землетрясений108
3.4.Оценка интенсивности фоновых сейсмических воздействий115
3.5.Определение ширины зон влияния Центрально-Нарынского
разлома

3.5.1.	Данные	ПО	определению	ширины	зоны	влияния	Центрально
Нарынс	кого разл	ома.					125
Заключен	ие						129
Практичес	ские реком	едн	дации				130
Список ис	пользован	ной	литературы		• • • • • • • •		131

ПЕРЕЧЕНЬ СОКРАШЕНИЙ И ОБОЗНАЧЕНИЙ

ИС НАН КР-Институт сейсмологии Национальной академии Кыргызстан

ИФЗ РАН- Институт физики Земли Российской академии наук

ГЭС- Гидроэлектростанция

М=- Магнитуда (М=7.3)

ДДП-Древнеденудационная поверхность

MSK-64- Шкала сейсмической интенсивности

СВ- Северо-восток

ЦМР- Цифровая модель релефа

SRTM- Радиолокационная топографическая миссия шаттла

КФА-3000- Аэрофотоснимки камерой сверхвысокого разрешения.

T2- Teppacca 2

OSL- Optically stimulated luminescence (Оптическое датирования)

¹⁰Ве-Метод анализа космогенных изотопов

Seistronix RAS-24- Модель геофизического прибора - выполняет сейсмическое профилирование

МОВ- Метод отражённых волн

ARUP-(Arup Group Limited) (Лондон, Англия) Частная компания, провадивщая инженерно-геологические и палеосейсмологические изыскания Центрально-Нарынского активного разлома в западной части Нарынской впадины под строительство Университета Ага Хан.

ВОЗ- Возможно ожидаемые землетрясения.

ВВЕДЕНИЕ

Актуальность темы диссертации. Строительство каскада гидротехнических сооружений в долине реки Нарын в Центральном Тянь-Шане, является одним из важнейших приоритетов Кабинета Министров Кыргызской Республики. При проектировании таких каскадов должны учитываться условия территорий строительства больших плотин, поскольку размещение основных сооружений в пределах активных разломов может привести к последующему их разрушению при сильном сейсмическом событии. Необходимо также принять во внимание возможность существенного усиления сейсмической активности в ходе эксплуатации ГЭС и вопросы динамической устойчивости сооружений.

Основная сложность при оценке сейсмических условий Восточной части Нарынской впадины, в пределах которой планируется возведение каскада ГЭС, обусловлена резким несоответствием между низким уровнем современной сейсмической активности этой территории и наличием многочисленных позднеплейстоценовых и голоценовых разрывов, рассматриваемых, как следы сильных землетрясений предшествующего периода (Абдрахматов К.Е. и др. 2007). Помимо позднечетвертичных разрывов, в пределах всего Центрального Тянь-Шаня широко развиты крупные скальные оползни и обвалы, обычно концентрирующиеся вблизи зон активных разломов.

Надо отметит, что исторические данные о сейсмичности этого района имеются лишь за период, не превышающий 150-200 лет. Но кондиционная оценка сейсмичности может быть произведена только с привлечением данных о землетрясениях, имевших место задолго до начала установки первых сейсмических станций. Отметим, что за последние 20-30 лет в мировой сейсмологии укрепились представления о важнейшей роли палеосейсмологических данных при оценке долговременной сейсмической опасности, обуславливаемой событиями редкой (раз в 1000 – 10000 лет) повторяемости (МсСаlpin, 1996, 2009, Мак-Калпин, 2011). В большинстве

регионов мира, особенно там, где исторические сведения имеются за небольшой промежуток времени, именно палеосейсмологические данные позволяют наиболее объективно оценивать величину (магнитуду) сильных землетрясений и их период повторяемости. Это нашло свое подтверждение в случае Суусамырского землетрясения 1992 г., в эпицентральной зоне которого обнаружены приразломные уступы, образовавшиеся при аналогичных событиях в прошлом, хотя за исторический период до 1992 г. в этой зоне не было известно ни одного сколько-нибудь сильного землетрясения. Аналогичные примеры известны и на других Земного шара.

Связь темы диссертации с крупными научными программами (проектами) и основными научно-исследовательскими работами:

Диссертационная работа выполнялась в течение 2014-2022 гг. в соответствии с научно-исследовательской темой, выполняемой в Институте сейсмологии Национальной Академии наук Кыргызской Республики — «Оценка сейсмической опасности и создание инженерно-сейсмометрической службы в районах расположения крупных ГЭС (на примере Верхне-Нарынского каскада ГЭС)». Автор принимал непосредственное участие в реализации научных исследований по данной тематике.

Цель и задачи исследованя. Основная цель настоящей работы - оценка сейсмической опасности близрасположенных активных разломов для Верхне-Нарынского каскада ГЭС и прилегающих населенных пунктов.

Для достижения поставленной цели решались следующие задачи исследования:

- 1. Выявление и картирование активных разломов, расположенных в непосредственной близости от города Нарын и основных сооружений проектируемого Верхне-Нарынского каскада ГЭС.
- 2. Оценка сейсмической опасности выявленных активных разломов, методом палеосейсмологии.
- 3. Оценка зон влияния активных разломов

Научная новизна полученных результатов.

- 1. Впервые для Восточно-Нарынской впадины произведено детальное описание активных разломов, которые являются основой сейсмогенерирующих зон и являются источником сейсмической опасности этого региона.
- 2. Впервые произведена оценка сейсмической опасности активных разломов, расположенных в непосредственной близости от города Нарын и основных сооружений проектируемого Верхне-Нарынского каскада ГЭС.
- 3. Результаты палеосейсмологических исследований, отличающиеся тем, что в восточной части Нарынской впадины возможны землетрясения с магнитудами в диапазоне 7.0 7.5. Фоновая интенсивность сейсмических воздействий на площадках основных сооружений этих гидроузлов составляет 9 баллов.
- 4. Результаты анализа подвижек по Центрально-Нарынскому разлому, отличающееся тем, что он наиболее близко расположен к сооружениям проектируемого Верхне-Нарынского каскада ГЭС. Подвижки, которых, произошли в период 2486 г. до н.э. 214 г. н.э. Повторяемость подвижек по имеющимся данным составляет несколько тысяч лет и за указанный период их произошло, как минимум, две.
- 5. Предложена практическая рекомендация по локализации сооружений в зависимости от ширины влияния активного разлома, отличающаяся тем, что полученные нами данные позволяют заключить, что ширина влияния Центрально-Нарынского разлома, проходящего в непосредственной близости от г. Нарын и от проектируемого Верхне-Нарынского каскада ГЭС, составляет 60 метров в пределах поднятого крыла и до 20 метров в опущенном крыле.

Практическая значимость полученных результатов.

Практическая значимость диссертации заключается в оценке сейсмической угрозы восточной части Нарынской впадины и ее влияния на проектируемый Верхне-Нарынский каскад гидроэлектростанций. Результаты исследования в отношении безопасности сооружений могут быть использованы при проектировании и строительстве ГЭС, чтобы принять необходимые меры по защите сооружений от сейсмических воздействий. Это может включать в себя

технические меры, такие как использование специальных конструкционных материалов и усиление оснований. Градостроительные аспекты включают информирование заинтересованных сторон о сейсмической опасности активных разломов, чтобы разрабатывать градостроительные планы и строить здания и инфраструктуру, учитывая потенциальные риски сейсмических событий. Это поможет снизить ущерб и потери, связанные с землетрясением. На основе данных о сейсмической опасности можно создать планы эвакуации при чрезвычайных ситуациях для населения, чтобы снизить риск смерти и повреждений в результате землетрясений.

Таким образом, эта диссертация имеет важное практическое значение для многих областей, таких как инженерное строительство, градостроительство, финансы и общественная безопасность, поскольку она помогает снизить риски и ущерб, вызванные сейсмическими событиями.

Экономическая значимость полученных результатов.

Исследование сейсмической опасности восточной части Нарынской впадины и его влияния на проектируемый Верхне-Нарынский каскад гидроэлектростанций имеет большое экономическое значение.

В части сокращении рисков экономическая значимость заключается в том, что информированность о сейсмической опасности, позволяет минимизировать потери и убытки во время строительства и эксплуатации различных инженерных сооружений. Это снижает затраты на восстановление и ремонт после сейсмических воздействий.

Обеспечение жизненного цикла сооружений зависит от надлежащих антисейсмических мер безопасности, которые могут продлить срок службы гидроэлектростанций. Это предотвращает непредвиденные повреждения и обеспечивает более длительную и эффективную работу ГЭС, что способствует экономической стабильности в регионе.

Инвестиционный потенциал отдельно взятого сооружения или региона в целом, зависит от защищенности сооружений от сейсмических рисков, регион или объект становятся более привлекательным для инвесторов.

Осведомленность заинтересованных сторон о защищенности инфраструктуры от сейсмических рисков, вызывает уверенность в инвестициях в проекты.

Таким образом, исследование сейсмической опасности имеет прямое влияние на экономическую устойчивость и развитие района, обеспечивая безопасность сооружений, привлекая инвесторов и создавая новые возможности для экономического роста.

Основные положения диссертации, выносимые на защиту:

- 1. Основными активными структурами, которые могут оказать роковое влияние на проектируемый Верхне-Нарынский каскад ГЭС, являются Центрально-Нарынский и Нуратооский активные разломы.
- 2. В восточной части Нарынской впадины возможны землетрясения с магнитудами в диапазоне М 7.0 7.5. Фоновая интенсивность сейсмических воздействий на площадках основных сооружений Верхне-Нарынского каскада ГЭС составляет 9 баллов.
- 3. Ширина влияния Центрально-Нарынского разлома, проходящего в непосредственной близости от сооружений каскада ГЭС составляет 60 метров в пределах поднятого крыла и до 20 метров в опущенном крыле.

Методика исследований и достоверность результатов

Диссертация выполнена на основе результатов научных исследований, выполненных в период с 2014 года методом палейсейсмологии. В ходе полевых исследований было закартированно и продейдено геодезические профили так же вскрыты траншеями в крест простиранию уступа Центрально-Нарынсккого и Наратоуского активных разломов выраженных в рельефе, кроме того, были проведены дешифрирование аэрофотоснимков современных сейсмодисслокационных структур и активных разломов выраженных в рельефе с использованием GoogleEarth Open topography, Bing, Open Street, SRTM DEM, и др.

Личный вклад соискателя. В процессе многолетних полевых работ в Нарынской впадине диссертантом лично были выполнены: сбор, обработка, анализ исходных данных о структуре доновейшего фундамента и новейших

разломах, геолого-тектонических особенностях строения очаговых зон сильнейших землетрясений этого региона. Проведенные соискателем исследования базируются на полевом картировании активных в позднем плейстоцене и голоцене структур, дешифрировании аэрокосмоснимков, анализе полученных результатов и внедрении этих результатов в производство.

Апробация результатов исследования. Основные положения диссертационной работы докладывались и обсуждались:

- на Симпозиуме «Инновационное развитие: потенциал науки и образования как основа индустриализации регионов» Национальная Академия Науки КР, Бишкек, 2021 г.
- на Международном форуме молодых учонных «Наука без границ» Россия, г. Нижний Новгород, 2022 г
- на Академическом форуме молодых ученых стран Большой Евразии «Континент науки» Россия, Москва 2023 г.

Полнота отображения результатов диссертации в публикациях.

Основные результаты работы нашли свое отражение в печатных изданиях, рекомендованных в НАК ПКР.По теме диссертации опубликовано 10 научных статей [5, 6, 7, 10, 26, 27, 28, 29, 30,31,].

Структура и объем диссертации.

Диссертация, объемом 146 страниц, состоит из Введения, трех глав, Заключения и списка использованной литературы. В работе имеется 106 Рисунокунков и фотографий, 4 таблицы и 164 наименований использованной литературы.

Работа выполнена в Лаборатории «Оценка сейсмической опасности» Института сейсмологии Национальной академии наук Кыргызской Республики под руководством доктора геолого-минералогических наук, профессора, член корреспондента Абдрахматова Канатбека Ермековича, которому автор приносит искреннюю благадарность за оказанное профессональное руководство и содействие в подготовке диссертации. В процессе работы над диссертацией автор получал ценные советы от кондидата геолого-минералогических наук, ведушего научного сотрудника Фортуны А. Б. Выражаю также глубокую

благодарность за поддержку и помощь при обработке полевых данных и по сбору материалов коллективу лаборатории и коллегам из России, Франции, США.

Основная сложность при оценке сейсмических условий Восточной части - Нарынской впадины, в пределах которой планируется возведение каскада ГЭС, как и всего Центрального Тянь-Шаня, обусловлена резким несоответствием между низким уровнем современной сейсмической активности этой территории и наличием многочисленных молодых (позднеплейстоценовых и голоценовых) разрывов, рассматриваемых, как следы сильных землетрясений более далекого прошлого (Абдрахматов и др. 2007) [8].

Неучет палеосейсмологических данных о землетрясениях, имевших место задолго до начала установки сейсмических станций, может привести к нежелательных разрушениям, финансовым потерям и человеческим жертвам. Так например, ретроспективный анализ космических и аэрофотоснимков, сделанных до разрушительного Нефтегорского землетрясения 1995 г. на Сахалине (М=7.3), показал наличие следов предшествующих голоценовых подвижек по Верхне-Пильтунскому разлому, к которому был приурочен очаг этого землетрясения (Булгаков и др., 2002) и которые не были учтены при оценке сейсмического Рисунокка. Чуйское землетрясение 2003 г. (М=7.5) в Горном Алтае также произошло в районе, считавшемся относительно слабосейсмичным, однако за несколько лет до этого там были выявлены следы сильных голоценовых землетрясений (Рогожин, Платонова 2002). Эти другие аналогичные примеры (Li Yong, et al., 2009, Densmoreet al., 2007) наглядно демонстрируют, что отсутствие сведений о сильных землетрясениях за последние несколько сотен и даже тысяч лет в тектонически активном районе ни в коей мере не может являться достаточным основанием для суждения о уровне низком сейсмической опасности. Поэтому при выделении сейсмогенерирующих зон района строительства Верхне-Нарынского каскада ГЭС и при оценке их сейсмического потенциала (Мтах) мы, в первую очередь, палеосейсмологические опирались именно на многочисленные данные

(Абдрахматов, Лемзин, 1989, 1990; Стром, 1983; Абдрахматов и др., 1994, 2007; Strom et al.,2008). В качестве сейсмогенерирующих структур рассматриваются активные разломы (зоны активных разломов). Основанием для отнесения разлома к категории активных служат свидетельства о хотя бы одной сейсмогенной подвижке по нему, произошедшей за последние несколько десятков тысяч лет. Палеоосейсмологические данные, имеющиеся для многих что сильные (характеРисуноктичные) регионов мира, показывают, (Characteristic earthquake землетрясения - Schwartz, Coppersmith, 1984) происходят на одном и том же сегменте сейсмогенерирующего разлома с периодичностью от нескольких сотен до нескольких тысяч лет (Wells D.L., Coppersmith K.J 1994.) Период в 50-100 тысяч лет, считая от современности, в течение которого сформировалось временем, наблюдаемых в настоящее время форм рельефа. Отсюда следует общее свойство активных разломов, практически значимое для их обнаружения и картирования – они деформируют элементы рельефа (и отложения) молодого (позднеплейстоцен-голоценового) возраста. Соответственно, наличие молодых разрывов, выраженных в рельефе в виде уступов или сдвига мелких геоморфологических элементов, также нарушающих молодые (позднечетвертичные) отложения, свидетельствует об активности зоны разлома и является достаточным основанием для того, чтобы рассматривать такую зону в качестве сейсмогенерирующей. Для указанного интервала времени радиоуглеродный метод датирования основной используемый при определении возраста палеосейсмодислокаций. Подчеркнем, что в качестве сейсмогенерирующих структур, с которыми могут быть связаны очаги сильных (потенциально опасных) землетрясений, обычно рассматриваются не отдельные частные разрывы, выявляемые в обнажениях и прослеживаемые в условиях горного рельефа иногда лишь на несколько километров, а крупные зоны разломов протяженностью в десятки и сотни километров, способные вместить очаг землетрясения с большой магнитудой. Конкретные частные разрывы, картируемые в поле, концентрируются в

пределах таких зон. Дополнительным аргументом в пользу такой трактовки этих зон является повышенная концентрация в зонах активных разломов многочисленных крупных скальных оползней и обвалов, особенно, если данные, указывающие на одновозрастность тектонических и имеются гравитационных дислокаций (Belousov et al., 1994, Bull, 1996) или если связь крупных скальных оползней с землетрясениями подтверждается набором (Strom, Stepanchikova, 2008, Strom, 2013a). Основной косвенных признаков палеоземлетрясений метод оценки магнитуд (и, соответственно, сейсмического потенциала выделенных сейсмогенерирующих зон) базируется известных соотношениях между магнитудой (Ms ИЛИ Mw), протяженостью сейсмогенных разрывов и величиной максимальной подвижки по ним (Slemmons, 1982; Nowroozi, 1985; Slemmons et al., 1989; Wells & Coppersmith, 1994; Vakov, 1996, Стром, Никонов, 1997, 1999; Стром, 1998, Чипизубов, 1998, Лунина, 2001).

ГЛАВА 1. <mark>ОБЗОР ЛИТЕРАТУРЫ В ОБЛАСТИ НЕОТЕКТОНИКИ ИЗУЧАЕМОГО РЕГИОНА</mark>

В свое время большой вклад в изучение геологии кайнозоя Нарынской впадины внесли С.С. Щульц, В.И. Попов, В.В. Петрушевский, А.А. Луйк, К.В. Курдюкова, И.Садыбакачов, А.Т. Турдукулов, В.И. Макаров, В.В. Благовидов, Н.П. Королева, О.И. Королев, Ш.А. Кыдыров и многие другие. Ими разработаны схемы стратиграфии кайнозойских отложений, молассы разделены на Киргизский красноцветный и Тянь-Шанский орогенический комплексы, изучены литологический состав и внутренние строение отложений, проведены фациально-палеографические анализы. Исследователи новейшей тектоники региона определяли следующие важнейшие проблемы.

Соотношения складчатых и глыбовых (разрывных) структур. Взгляда на глыбовой природе новейших структур придерживались К.И. Богданович, В. Девис, Г. Кейдель, Г. Принц, Д.И. Мушкетов, В.А. Обручев. К. Лекус, Ф Махачек, Д.В. Наливкин, В.В. Попов и др. С их точки зрения складчатости участвуют лишь породы кайнозоя. Взгляд о складчатой природе новейших структур развивали: Э. Арган, И.В. Мушкетов, С.С. Шульц, Б.А. Петрушевский и др. Идею о складчато-глыбовой природе новейших структур поддерживали: В.А. Николаев, Н.П. Пейве, Н.И. Синицын, Е.Е. Хаин, О.К. Чедия, И. Садыбакачов, ВИ Макаров и другие. Соотношение горизонтальных и новейших вертикальных тектонических движений. Исследователи, поддерживавшие идею о глыбовой природе новейших структур, а также А.В. Пейве, Н.И. Синицын, О.К. Чедия и др. придают главную роль вертикальном тектоническом движениям. Д.И. Мушкетов, В.А. Николаев, Е.Е. Хаин, С. Садыбакасов и др. горизонтальным тектоническим движениям. В.И. Попов, И. Садыбакасов и др. развивали идею о волновом характере орогенеза опусканий и поднятий, В.И. Мушкетов, А.В. Пейве, И. Садыбакасов, В.И. Макаров, М. Омуралиев и др. придерживаются взгляда о пересечении («интерференции») складчатостей разных направлений различных слоев расслоенной литосферы.

Изучение связи новейшей и современной тектоники и сейсмичности. Б.А. Петрушевский отметил, что историко-геологические особенности развития является важным фактором при анализе сейсмичности. К.И. Багданович, В.В. Папов, И.А. Резанов, В.В. Крестников, И.А. Нерсесов, Г.И. Рейснер отметили связь между сейсмической активностью и значениями градиентов скоростей новейших тектонических движений. С.С. Шульц, В.Г. Трифонов, К.Е. Абдрахматов, И.А. Лемзин и др. отметили связь импульсных движений по активным разломам (в позднем плейстоцене-голоцене) и сейсмичности.

Первое, что следует отметить, это факт того, что в данном регионе были исследования, проведены связанные с современными геологическими деформациями и процессами горообразования это может включать в себя исследования геологической структуры, истории землетрясений, геодинамики и другие связанные аспекты. Однако, несмотря на большую проведенные работы, не была проведена или не была учтена методология для оценки сейсмической опасности. Таким образом была проведена Оценка сейсмической опасности восточной части Нарынской впадины, было закартированно геоморфологические террассы, уступы активных разломов и пройдены траншейии в рест простираню по уступам активных разломов а так же выявлены следы древних палеоземлятресений.

1.1. До новейшая структура

Нарынская зона расположена к востоку от Ферганского звена Таласо-Ферганского разлома, ее граница с юга очерчивается Атбаши-Инельчекским разломом, а с севера — «линией Николаева». Внутреннее строение зоны довольно сложное. В общем плане она состоит из ряда согласно вытянутых узких блоков близ широтного простирания, постепенно разворачивающихся к северо-западу вблизи Таласо-Ферганского разлома. По режиму тектонического развития и типу складчатых деформаций в пределах Нарынской зоны выделяются

среднегерцинские парагеосинлинальные подзоны — Байбичетауская и Кавакская, герцинские геоантиклинальные устойчивые поднятия - Кекиримское и Джетимское, и Джамандаванский позднегерцинский орогенный прогиб (Тектоническая карта Киргизской ССР, 1987) [6]. В строении палеозон участвуют структурно — вещественные комплексы древнего дорифейского (карельского) фундамента, байкальско—каледонского и герцинского структурных этажей.

Рисунок 1.1. Геологическая карта района расположения Верхне-Нарынского каскада ГЭС. Скомпоновано из листов Государственной геологической карты СССР, листы К-43-ХХІІ, ХХІІІ. На геологической карте показны места каскадов ГЭС «Нарынский ГЭС-1», «Нарынский ГЭС-2» и «Нарынский ГЭС-3»,— «Ак-Булунскуй ГЭС-4». (Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М, Наука, 1977; Рахмединов, Э.Э. 2018 [6].

Дорифейский метаморфический фундамент обнажается в ядрах Кекиримского и Джетимского геоантиклинальных поднятий и выходит на поверхность в виде узкого тектонического блока вдоль Атбаши – Иныльчекского глубинного разлома. КРисунокталлический фундамент сложен глубокометаморфизованными породами: гнейсы, слюдяные сланцы, амфиболиты, мраморы, кварциты толщи Каргыш (500 м мощности) в Такталыкской гряде и Малого Нарына (до 2500 м) в хребте Джетим-Тоо. (Рахмединов Э.Э., 2020) [26].

Байкальско-каледонский складчатый комплекс объединяет верхнедокембрийские орогенные и нижнепалеозойские субплатформенные породы. Нижние части разреза комплекса сложены рифейской порфир — туфовой и вендской молассовой формациями, залегающими с разрывом и резким несогласием на метаморфических образованиях дорифейского фундамента. Порфир-туфовую формацию в Нарынской зоне представляют порфиры, туфы, туфопесчанники, местами порфириты свиты Большого Нарына (2000-2500 м). Молассовая формация сложена тиллитами, тиллитоподобными конгломератами, сланцами, песчаниками с горизонтами и пачками железистых сланцев, мощностью до 50-2000 м. Нижнепалеозойские известняково — кремнисто — терригенные породы (300-2100 м) залегают со скрытым несогласием на верхнедокембрийских и на более древних образованиях.

Герцинские складчатые комплексы. В герцинских основании образований эпикаледонский выделяются дейтероорогенный комплекс, залегающий со скрытым параллельным несогласием на нижепалеозойских субплатформенных образованиях. Он включает континентальную красноцветную грубообломочную молассу среднего – верхнего девона, которая характерна Срединного Тянь-Шаня Тюлькубаашская ДЛЯ представленная нижней части разногалечными ПОЛИМИКТОВЫМИ конгломератами. Дейтероорогенный комплекс завершает фаменская терригенно – карбонатная (местами гипсоносная) формация, мощностью 600 - 1000 м.

Интрузивные образования контролируются в основном глубинными разломами, ограничивающими Нарынскую зону. Коктурпакский массив гранодиоритов представляет собой типичное трещинноватое тело, вытянутое вдоль «линии Николаева» на 30 км при ширине выхода 1-6 км. Породы массива

прерывают нижнекарбоновые осадочные толщи. Интрузии среднего и основного состава (диориты, кварцевые диориты и габро диориты) приурочены к Атбаши — Иныльчекскому разлому (бассейн среднего течения р. Каракоюн). http://ginras.ru/library/pdf/1982_kirgizia2.pdf

1.2. Основные особенности новейшей и современной тектоники Центрального Тянь-Шаня

Границы Центрального Тянь-Шаня как новейшего горного сооружения Тянь-Шаня в значительной мере условны. В качестве западного ограничения обычно рассматривается Таласо-Ферганский разлом; восточного – горные массивы Хан-Тенгри и; северного (на меридиане исследуемого участка) – северное подножие хр. Терскей-Алатау, и южного – хребет Кокшаалтау. Наиболее характерной особенностью новейшей структуры Центрального Тянь-Шаня является наличие крупных широких межгорных впадин – Аксайской, Атбашинской, Алабуга-Нарынской, Джумгальской, Сонкульской Суусамырской, разделенных протяженными новейшими поднятиями горных хребтов. Эти впадины представляют собой новейшие синклинали, обычно асимметричные, крутые крылья которых оборваны крупными новейшими разломами. Помимо перечисленных, относительно изометричных широких впадин, здесь выделяются и узкие, протяженные впадины Кокомеренская, Тюлекская, Каракуджурская и др., представляющие собой новейшие грабен-синклинали, рамповые нередко зажатые между ограничивающими их надвигами (Садыбакасов, 1972) [32].

Горные хребты, разделяющие новейшие впадины, представляют собой новейшие антиклинали, на крыльях, а иногда и в сводовых частях которых сохранились фрагменты древней денудационной поверхности (ДДП), перекрытой чехлом неогеновых (местами, верхнепалеогеновых и, на некоторых

участках, юрских угленосных) отложений (Шульц, 1948 [43], Макаров, 1977 [48], Чедия, 1986) [40]. ДДП дислоцирована конформно с перекрывающими ее континентальными кайнозойскими отложениями, причем в некоторых местах углы падения достигают 90° и даже наблюдается опрокинутое залегание. Это приводит к тому, что при геологической съемке крутопадающие, несогласные стратиграфические контакты, иногда ошибочно принимались за разрывные нарушения. (Лунина О. В. 2001 [20], Чедия О.К. 1986 [40], Шульц С.С. 1948) [43].

Большинство разломов, ограничивающих новейшие поднятия и впадины, несут признаки позднечетвертичной активизации и, на этом основании, рассматриваются, как сейсмогенерирующие структуры.

По режиму новейших движений изучаемая территория, полностью входящая в Северо-Тянь-Шанскую эпиплатформенную орогеническую область, разделяется на две зоны: 1 - устойчивого поднятия и 2- обращенных четвертичных поднятий на кайнозойских прогибах. К первой относятся система хребтов Нура-Тоо, Нарын-Тоо, Джетим-Тоо с амплитудой новейших поднятий до 3 км. Сочленение этих разнорежимных структур происходит по тектоническим линиям (Рисунок 1.2.1)

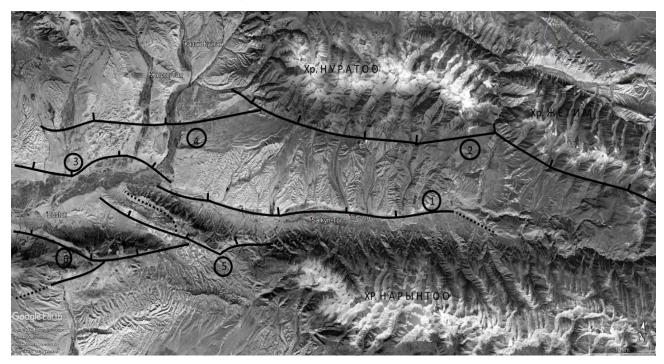


Рисунок 1.2.1 - Новейшие структуры района исследований. Черными линиями показаны основные разрывные нарушения. Цифры в кружках — название

разломов: 1- Центрально-Нарынский, 2- Нарынстооский, 3- Западная часть Центрально-Нарынского, 4 — Кажыртинский, 5- Аламышакский, 6- Каратооский. Основу новейших структур района составляют асимметричные складки основания большого радиуса кривизны осложненные, а местами и обусловленные крупными разломами. (Мак-Калпин Д. (ред.). А.Л. Строма. 2011) [23].

Впадины—синклинали и поднятия—антиклинали образуют системы субширотного простирания в пределах которых отдельные складки расположеные кулисообразно.

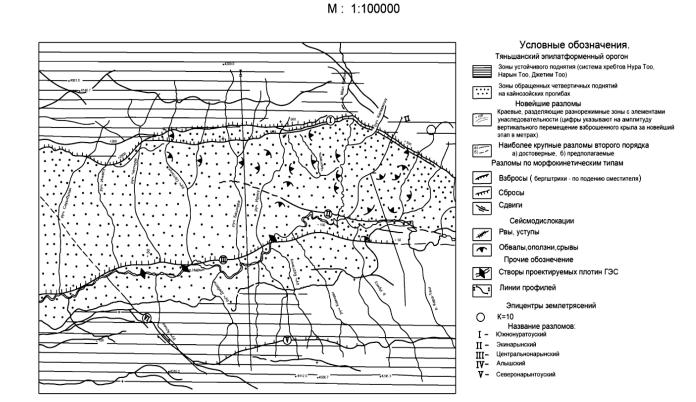
В направлении с севера на юг выделяются:

- 1. Система относительно широких впадин синклиналей: Султансарыйская, Чардактусуйская и, кулисно подставляющую последнюю, Болгартская.
- 2. Система поднятий, включающая хребет Капкатас и расположенные к югу от Болгартской впадины поднятия Кекбулак и Арчалы.
- 3. Система узких, возможно, редуцированных впадин,
- 4. вытянутых вдоль рек Коктурпак, Сарыкунгей, Малый Нарын и его притока р. Джинаалач.
- 5. Крупная система поднятий гор Нура и хребта Джетим.
- 6. Крупнейшая новейшая впадина района Нарынская, которая в восточном направлении замыкается и осложнена рядом мелких антиклиналей и синклиналей.
- 7. К югу от Нарынской впадины находится крупнейшее поднятие хребет Нарынтоо.

Новейшие структуры, расположенные южнее, имеют уже иное — северовосточное простирание, и косо сочленяются с субширотно ориентированным Нарынтауским поднятием. С запада на восток здесь выделяются Атбашинская впадина, поднятие хр. Атбаши и Аксайская впадина. Все основные структуры характеризуются отчетливой южной вергентностью — складки имеют более пологие северные и крутые южные крылья, обычно оборванные разрывами.

Последние практически всегда падают на север, образуя в ряде случаев отчетливые козырьковые взбросо – надвиги.

Одна из систем таких разломов проходит вдоль северных бортов долин рек Коктурпак, Сарыкунгей, Малый Нарын и далее на восток вдоль долины р. Джиналач. По нему верхнепротерозойские отложения, слагающие хребет Капкатас и поднятия Кебулак и Арчалы, взброшены на неогеновые (возможно, неоген — нижнечетвертичные) отложения, выполняющие Коктурпакскую и Малонарынскую впадины. В западном направлении система смыкается с разломом, ограничивающим с юга Сонкольскую впадину. Нарушения несут следы позднечетвертичного обновления.


Следующее к югу нарушение проходит вдоль южного подножия хр. Джетим и гор Нура. Эта система разломов, отдельные элементы которой – взбросонадвиги, по которым палеозойские отложения южного крыла надвинуты на неогеновые отложения, выполняющие Восточно-Нарынскую впадину – кулисообразно смещены относительно друг друга. Восточно- Нарынская мегасинклиналь является восточным продолжением Онарчинской. отличается более высоким положение палеозойского фундамента, а ширина ее сокращается до 15 км. Изгиб поверхности фундамента в общем повторяется в кайнозойском чехле. Согласно наблюдениям над деформациями пород орогенического комплекса и данным электроразведки, в осевой части впадины отмечается пологая антиклинальная складка фундамента, разорванная диагональным разрывом северо-восточного простирания. Южнее антиклинали расположена широкая и пологая синклинальная складка. В ее осевой наблюдается продольный разрыв, северное крыло которого в районе долины Сарыбулак взброшено на 300 м.

Строение описанной зоны в целом свидетельствует о ее формировании в обстановке субмеридинального сжатия.

Нуратооское поднятие представляет собой брахиморфную магантиклиналь, оборванную с юга крупным взброса-надвигом. Амплитуда вертикального перемещения по плоскости разлома достигает более 2000 м. В долине р. Чет-

Нура этот разлом образует резкое «флексурообразное» (в плане) преломление (Макаров, 1977) [21], не связанное с особенностями рельефа. Помимо вертикального перемещения крыльев разлома, можно наблюдать и горизонтальные в виде сдвига, что хорошо видно в восточном правобережье р. Малый Нарын (Лунина О. В. 2001) [20].

КАРТА СЕЙСМОТЕКТОНИКИ ВЕРХНЕНАРЫНСКОГО КАСКАДА ГЭС

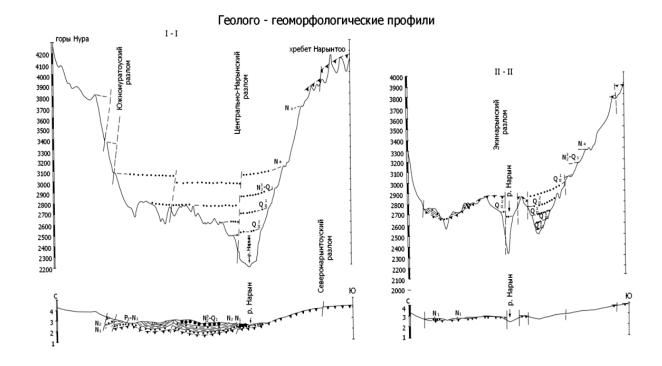


Рисунок 1.2.2 - На западной периклинали Нуратинской мегантиклинали по геоморфологическим данным можно наблюдать серию радиальных трещин, которые связаны с растяжениями, возникающими в палеозойском массиве при его своеобразном изгибе. Отчет лаб. Сейсмотектоники 93 год.

Нарынтауское поднятие, к которому на западе кулисообразно причленяются структуры Алымышыкское, Карачайское и Каратау, постирается в широтном направлении на расстоянии около 150 км при ширине 10-15 км. В западной части поднятие представляет собой антиклинальный изгиб палеозойского массива, который в периклинальной части облекается согласно дислоцированными красноцветными отложениями. В восточном направлении склада постепенно сужается, с южной стороны срезаясь под острым углом Нарынтауским и Улан-Кокджарским разрывом (Макаров 1977) [21]. Первый из них является надвигом и представлен серией параллельных разрывов, падающих на север под углом 30-45 градусов. Амплитуды перемещения по ним достигают 1500 м. В районе сквозного ущелья р. Улан (восточной) отрицательная ундуляция шарниров Наррынтауской мегаантиклинали разделяет ее на две кулисы: западную и восточную. Нарынтауское поднятие ограничено с двух сторон крупными разломами и в долине р. Чакыркорум оно выклинивается. На этом участке кроме

продольных разрывов отмечаются секущие нарушения. Улан-Кокджарский разлом являются частью древнего Атбаши-Иныльчекского глубинного разлома и представляет собой крутой взброс. Восточнее пер. Улан Южное крыло, а затем и осевая часть Нарынтауской мегантиклинали срезаны разломами.

В соответствии с вышеизложенным описанные разломы могут рассматриваться как основные сейсмогенерирующие структуры, обладающие значительным сейсмическим потенциалом. В связи с этим важнейшее значение приобретает проблема выделения фрагментов разломов, которое могут, по крайней мере, предположительно, единовременно вспарываться, формируя очаги сильных землетрясений.

Весьма отчетливо такое членение разломом (как, впрочем и ограничиваемых ими складчатых структур) видно в системе хребтов Нура и Джетимтоо, ограниченных с юга крупным новейшим надвигом. Здесь в пределах изученного района отчетливо выделяется три фрагмента системы «складка-разлом», разделенные диагональными нарушениями северо-восточного простирания, и диагональными нарушениями резкого «левостороннего» изгиба южного склона гор Нура на правом борту долины р. Четнура до долины р. Кашкасу в верховьях бассейна р. Сарыкунгей; на востоке-вдоль долины р. Джакболот, выше пер. Туюксу и вдоль левой составляющей ручья Кенсу. Указанные линеаменты разделяют поднятия Нура и Джетитоо на фрагменты с несколько различной ориентировкой оси новейшей складки и (особенно восточной) - смешенной в осевой частью поднятия соответственно разделен ограничивающий поднятие с юга. Протяженность центрального участка около 50 км. Восточный и особенно, западный участки, лишь частично попадают в пределы изученного района. При этом, по нашему мнению, диагональные разрывы отнюдь не является сдвигами, нарушениями некогда единую структуру. Это, скорее всего, древние нарушения глубокого заложения, образовавшие как бы каркас, в котором формировалось новейшие складчато-разрывные структуры. Как будет показано в главе 2, описанное разделение структуры хорошо

согласуется с особенностями распространения голоценовых, предположительно сейсмогенных дислокаций.

Отдельные кулисообразные фрагменты, протяженностью порядка 20 км каждый, могут быть выделены в пределах поднятия хр. Капкатас. При этом границы участков не совпадают с границами участков поднятия гор Нура и Джетимтоо.

1.3 Современная сейсмичность региона.

особенностью сейсмичности Характерной регионального ПОЛЯ Центрального (Кыргызского) Тянь-Шаня за период инструментальных и исторических наблюдений является его существенная неоднородность. Подавляющее большинство эпицентров находится в пределах северной и южной границ этой горной области и на территории к западу от Таласо-Ферганского кососекущего ороген разлома При этом пограничная зона, в пределах которой располагаются такие крупные города, как. Бишкек и Алматы, характеризуется большим числом крупных (М>6.5) землетрясений, при относительно небольшом количестве сейсмических событий средней и малой магнитуды, в то время как в пределах южной пограничной области (к югу от водораздела хребта Кокшаалтау) и к западу от Таласо-Ферганского разлома крупные землетрясения происходят на фоне намного большего числа средне- и маломагнитудных землетрясений. В то же время необходимо учитывать, что регулярные письменные сведения о землетрясениях Кыргызстана собраны лишь со второй половины XIX века например, Мушкетов, Орлов, 1893) [68], т.е. за период, существенно меньший периода повторяемости крупных землетрясений. Отсутствуют такие сведения и в доступных нам китайских источниках. Поэтому очевидно, что исторические (и инструментальные) данные недостаточны для того, чтобы достоверно и объективно охарактеризовать долговременный сейсмический режим всей этой горной области.

Первое сильное землетрясение в Кыргызской части Тянь-Шаня — Беловодское, последствия которого были обследованы и описаны в научной

литературе, произошло в 1885 г. Оно охватило северные предгорья Кыргызского хребта (Игнатьев, 1886). Сведений о том, как оно проявилось южнее, в Суусамырской долине и далее к югу, нет. Другие сильные землетрясения конца XIX – начала XX веков произошли к северу и северо-востоку от оз. Иссык-Куль. В частности, одно из крупнейших и наиболее подробно изученных внутриконтинентальных землетрясений – Кеминское 1911 г. с М=8.2 – сопровождалось образованием поверхностных разрывов и обрушением склонов в зоне протяженностью ~ 150 км (Богданович и др., 1914, Кучай, 1969, Дельво и др., 2001) [58]. Еще одно большое землетрясение – Чаткальское с М=7.6, произошло в 1946 г. западнее зоны Таласо-Ферганского разлома (Леонов, 1970, Кучай, 1971). Интенсивность всех этих событий, например, в районе Камбаратинской ГЭС-1 очевидно не превышала 5-6 баллов по шкале MSK-64. Плотность эпицентров слабых землетрясений в Центральном Тянь-Шане также существенно уступает таковой на окружающих его высокоактивных территориях.

Заключения; Впервые для Восточной части в Нарынской впадины произведено детальное описание активных разломов, которые являются основой сейсмогенерирующих зон и являются источником сейсмической опасности этого региона.

ГЛАВА. 2 МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Центрально-Нарынский разлом.

В регионе широко развиты крупные активные разломы, проходящие вдоль осевых частей впадин и ограничивающие молодые растущие поднятия. Один из таких разломов — Центрально-Нарынский, показанный на геологических картах м-ба 1:200 000 и прослеживаемый на протяжении примерно 60 км от района аила Джалгызтерек - на западе до слияния рек Большой и Малый Нарын - на востоке. Это новейшее тектоническое нарушение с явными признаками позднечетвертичной активности проходит в непосредственной близости от проектируемых гидроузлов Верхне-Нарынского каскада ГЭС, вследствие чего связанные с ним землетрясения представляют наибольшую потенциальную опасность для этих объектов. Рахмединов, Э.Э. 2018 [28].

Морфологическое описание. Центрально-Нарынский разлом прекрасно выражен в рельефе: он смещает отложения и поверхности выравнивания вплоть до голоценовых (см.рис 2.1.1-2.1.2).

Рисунок 2.1.1 - Уступ Центрально-Нарынского разлома на правом берегу р. Нырын ниже створа предполагаемой Нарынской ГЭС-1, нарушающий 15-20-

метровую террасу Нарына. На левом берегу Нарына поднятое крыло разрыва размыто. Фотография А. Строма, 1991 г [44].

Рисунок 2.1.2 - Уступ Центрально-Нарынского разрыва к северу от села Таш-Башат. Этот участок располагается примерно в 1.5 км южнее створа проектируемой плотины Акбулунской ГЭС. Приразломный уступ отмечен красными стрелочками. Фотография А. Строма, 1991 г. [44].

В приустьевых частях долин рек Ири-Суу, Чет-Нура, Орто-Нура, Башнура- правые притоки р. Нарын, разлом проявлен наиболее выразительно (см.рис 2.1.1, и 2.1.2). Он рвет конуса выноса перечисленных притоков нарушая практически все террасы (за исключением пойменной и, возможно, первой (Шульц, 1948 [43], Абдрахматов и др., 2007) [8]. (см.рис. 2.1.3, и 2.1.4.).

На левом борту долины р. Чет-Нура в дорожном полке вскрыт пологий надвиг сильно дислоцированных, рассланцованных красноцветов неогена на аллювиальные галечники (см.рис 2.1.5, 2.1.6). При столь пологом падении плоскости разрыва формирование приразломного уступа высотой более 10 м, а по данным А.М. Корженкова (2006)[18], около 20 м, возможно при суммарной амплитуде смещений не менее 30 м.

Восточнее, между устьями рек Чет-Нура и Орто-Нура, высота приразломного уступа, который проходит здесь на некотором удалении от

подножия коренного склона, возрастает до 30 метров. На рисунке 2.1.7 видно, что по мере того, как приразломный уступ пересекает все более высокие террасы, возрастает и его высота, т.е. амплитуда смещения. Это может указывать на повторяющиеся смещения по Центрально-Нарынскому разлому.

Не исключено также, что уступ здесь образуют две, более или менее, параллельных ветви (см.рис 2.1.8). Далее к востоку разрыв уходит под низкие террасы на левобережье р. Нарын, которые не смещены (см.рис 2.1.9).

Отсутствие деформаций поверхностей низких террас указывает на импульсный характер подвижек по разрыву — если бы смещения по нему происходили постоянно, то уступ должен был бы наблюдаться и на низких (наиболее молодых) террасах.

Еще восточнее, на пересечении Центрально-Нарынского разлома с долиной р. Баш-Нура, красноцветные отложения неогена взброшены не менее, чем на 30-40 м, на аллювиальные галечники (см.рис 2.1.10).

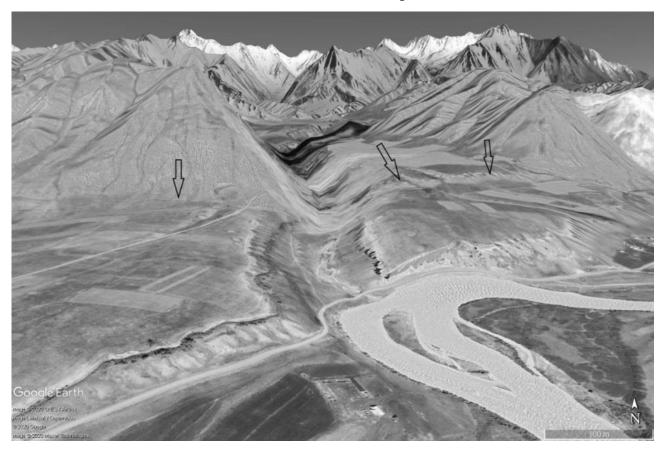


Рисунок 2.1.3 - Конус выноса р. Баш-Нура, смещенный по Центрально-Нарынскому разлому (обозначен стрелочками). Высота уступа на конусе выноса составляет примерно 30 метров.

Рисунок 2.1.4 - Конус выноса р. Чет-Нура, смещенный по Центрально-Нарынскому разлому. Высота уступа на конусе выноса на правобережье р. Чет-Нура составляет ~20 м

Рисунок 2.1.5 - Вид на левый борт долины р. Чет-Нура. Красная стрелочка указывает на обнажение, показанное на (Рисунок А.Л. Строма, 1991 г.) [44].

Рисунок 2.1.6 - Пологий надвиг красноцветов неогена на аллювиальные галечники на левом борту долины р. Чет-Нура

Рисунок 2.1.7 - Нарастание высоты приразломного уступа при пересечении более высоких террас

Рисунок 2.1.8 - Две ветви приразломного уступа над аилом Орто-Нура. Сплошными стрелочками обозначена основная ветвь разлома (селение, часть которого видна в правой части снимка, расположено на его опущенном крыле), пунктирными — дополнительная. Поверхность между ними слегка запрокинута, что указывает на выполаживание с глубиной сместителя основной ветви разлома.

Рисунок 2.1.9 - Положение Центрально-Нарынского разлома восточнее аила Орто-Нура. Примерное положение разлома показано пунктирной линией. Стрелочкой на заднем плане обозначен отчетливо выраженный приразломный уступ. В низких террасах на левом берегу реки уступ не проявлен. Его совпадение с уступом низкой террасы здесь случайно.

Рисунок 2.1.10 - Пересечение Центрально-Нарынского разлома с долиной р. Баш-Нура. Линия разрыва обозначена красными стрелочками [44].

На этом участке в поднятом крыле разлома в основании разреза, сложенного красноцветными алевролитами и песчаниками неогена, видны разлинзованные, будинированные терригенные отложения палеозойского возраста, отсутствующие как западнее, так и восточнее (см.рис 2.1.11). Очевидно, амплитуда новейших перемещений по разлому на этом участке была максимальной.

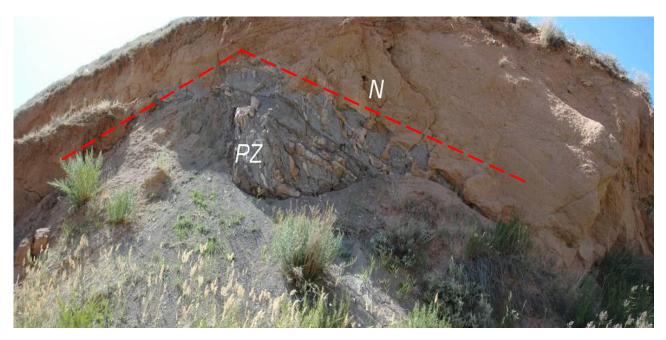


Рисунок 2.1.11 - Выход палеозойских отложений в основании неогеновых красноцветов в поднятом крыле Центрально-Нарынского разлома.

Далее к востоку Центрально-Нарынский разлом прослеживается вплоть до русла реки Нарын, которое он пересекает примерно в 700 м ниже по течению от предполагаемого створа плотины Нарынской ГЭС-1 (см.рис 1.2.2). Затем выраженный в рельефе разрыв пересекает терассу деривационного канала и протягивается еще как минимум на 4 км на восток, до дороги, ведущей на створ Акбулунской ГЭС и в долину Малого Нарына (см.рис 2.1.2). и даже несколько восточнее. Этот участок, в пределах которого разлом был изучен в специальной пройденной траншее, будет описан в следующем разделе диссертации.

Еще восточнее молодой разрыв выражен хуже. Не исключено, что он распадается на несколько сближенных малоамплитудных ветвей, проходящих вдоль северного подножия отчетливо выраженного новейшего поднятия, рост которого привел к существенной перестройке рельефа на участке слияния рек Большой и Малый Нарын.

Это поднятие, в восточной части которого выработан антецедентный каньонообразный участок нижнего течения р. Большой Нарын, протягивается, постепенно расширяясь, на восток, примерно, на 11 км до крутого поворота реки Б. Нарын ниже устья его левого притока руч. Караташ (см.рис 2.1.12). Очевидно,

его воздымание привело, в том числе, и к формированию каньона, в котором располагается створ плотины Акбулунской ГЭС.

Восточная часть гряды и ее основание сложено, преимущественно, палеозойскими отложениями. Однако к северу от основного шва Центрально-Нарынского разлома выделяется ряд субпараллельных ему нарушений, по которым палеозойские отложения надвинуты на неогеновые по серии чешуйчатых новейших надвигов (см.рис 2.1.13, и 2.1.14). Весь этот комплекс чешуйчатых надвигов перекрыт мощной толщей аллювиальных галечников, которые весьма интенсивно дислоцированы – наклонены в южных румбах на 10-15° (см.рис 2.1.15). Аналогичные деформации в четвертичных аллювиальных отложениях наблюдались нами восточнее, на перевале между долиной р. ИРисунокуу-Южная и Верхним Нарыном. Наклон к северу отчетливо проявлен и на поверхности гряды, по северному склону которой проходит деривационный канал (см.рис 2.1.16). Широкая долина, расположенная к югу от этой гряды, представляет собой брошенную долину пра-Нарына (пра-Большого Нарына), заполненую слившимися конусами выноса боковых притоков, дренирующих северный склон поднятия хребта Нарынтау (см.рис 2.1.12). В основании разреза аллювиальных отложений в долине р. Каинды – левого притока Нарына, впадающего в него между створами Акбулунской ГЭС и Нарынской ГЭС-1, под сравнительно мелкогалечными аллювиально-пролювиальными отложениями конуса выноса Каинды, залегают крупновалунные отложения русловой фации аллювия реки Нарын. Аналогичные валунные отложения встречены в 1000 м западнее на поднятом крыле Центрально-Нарынского разлома.

Формирование выраженной в рельефе субширотной приразломной антиклинали в поднятом крыле Центрально-Нарынского разлома привело к тому, что первоначальная, субширотная долина реки Большой Нарын была «брошена», и река выработала себе новое русло вдоль нижнего течения ее правого притока – ручья Чирпыкты.

Судя по наличию крупных, хорошо окатанных валунов на гребне вышеописанной субширотной гряды, в седловине к западу от вершины с

отметкой 2729.3 м, когда-то именно здесь могла проходить приустьевая часть пра-долины Малого Нарына (см.рис 2.1.17), сливавшегося с пра-Большим Нарыном, примерно, на меридиане восточной окраины аила Таш-Башат.

Рисунок 2.1.12 - Трезмерное изображение антецедентного поднятия в висячем крыле Центрально-Нарынского разлома. Вид на восток. Маленькими стрелочками – линия разлома.

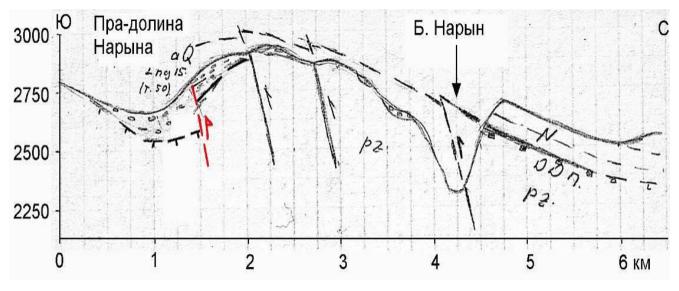


Рисунок 2.1.13 - Схематический профиль через растущую приразломную антиклиналь восточнее долины р. ИРисуноку-Южная. Рисунок А.Л. Строма, 1991 г. [44]. Красным цветом выделен основной шов Центрально-Нарынского разлома, по которому происходят наиболее молодые смещения. Движения по разрывам в его висячем крыле, по-видимому, завершились в конце неогена — начале четвертичного периода. (Новый каталог сильных землетрясений на

территории СССР с древнейших времен до 1975 г. М, Наука, 1977 [25]. Рахмединов Э.Э., Абдрахматов К.Е.2020) [30].

Далее к востоку, выше по течению р. Б. Нарын от устья его левого притока ручья Караташ, Центрально-Нарынский разлом затухает

Рисунок 2.1.14 - Одна из чешуй надвига на правом борту долины р. Б. Нарын вблизи ее слияния с М. Нарыном.

Палеозойские отложения, перекрытые неогеновыми красноцветами, подошва которых обозначена белой пунктирной линией, надвинуты на неогеновые же красноцветы. Разрыв обозначен красными стрелочками

Рисунок 2.1.15 - Наклон слоистости в аллювиальных отложения на западном окончании антецедентного поднятия.Вид на юго-восток. Отчетливо виден наклон отдельных пачек в аллювиальных отложениях на юг на примерно на 15°.

Рисунок 2.1.16 - Наклонная поверхность на южном склоне западной части антецедентного поднятия

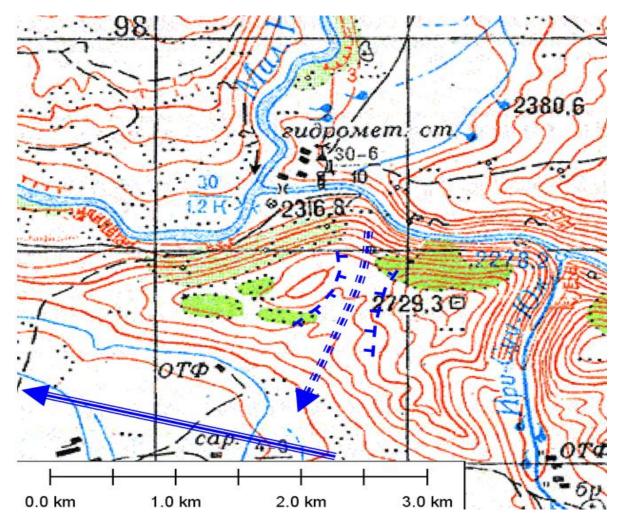


Рисунок 2.1.17 - Положение предполагаемой приустьевой части прадолины р. Малый Нарын Сплошная тройная линия со стрелкой — пра-долина Большого Нарына — Нарына; пунктирная линия со стрелкой — предполагаемая пра-долина Малого Нарына; подложка — карта м-ба 1:100 000. (Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М, Наука, 1977) [25].

2.1.1. Положение Центрально-Нарынского разлома в пределах территории г. Нарын

Как известно, для рационального расположения важных гидротехнических и гражданских зданий и сооружений необходимо учитывать зоны влияния активных разломов.

В пределах г. Нарын строение разлома и его положение детально изучено геологическими и геофизическими методами. Там, где разлом скрыт под толщей аллювиальных накоплений, его положение определялось с помощью мобильной

сейсморазведочной станции Seistronix RAS 24. Технические характеРисуноктики аппаратуры RAS-24 позволяют определять структуру строения земной поверхности (скоростные свойства) до 30 метров в глубину и в радиусе 100 метров. ХарактеРисуноктики сейсмостанции Seistronix RAS-24 приведены на рисуноке. 2.1.1.1.

RAS-24 Specifications

GENERAL		
Number of Channels:	12 or 24 per RAS module, up to 120 channels per system (5 modules)	
Sample Intervals:	.125, .25, .5, 1, 2 and 4 ms	
Record Length:	4 ms - 64 sec, 2 ms - 32 sec, 1 ms - 16 sec, 5 ms - 8 sec, 25 ms - 4 sec, 125 ms - 2 sec	
Multiline Operation:	10 lines	
CDP Operation:	2D: Automatic or manual roll of entire spread 3D: Managed by RAS-24 script editor	
Stacking:	Vertical stack	
Cable:	One 12 takeout cable for 12-channel system. Two for 24 channel system	
Laptop to RAS Interval:	1200ft maximum 3 pair wire	
RAS to RAS Interval:	5000ft maximum 2 pair wire	
Recording Format:	SEG-2, SEG-D 8038, SEG-D 8058	

RAS-72,96 120 MODULE	
Channels:	12 or 24
A/D Resolution:	24 bits using Delta-Sigma A/D converters - one per channel
Preamp Gain (PG):	12db, 24db, 36db or 48db, remotely selectable
Frequency Response:	. 125 ms: 2 - 3300Hz, . 25 ms: 2 - 1650 Hz, . 5 ms: 2 - 825 Hz, . 1 ms: 2 - 412 Hz, 2 ms: 2 - 206 Hz, 4 ms: 2 - 103 Hz
Dynamic Range:	112db @ 2 ms PG=36db, 117db @ 2 ms PG=12db (typ)
Distortion (THD):	.005% at 25 Hz, 2 ms sample interval (typ)
Crosstalk:	Greater than 90db
CMR:	Greater than 90db @ 60 Hz
Max Input Signal:	880 mVRMS @ 12db, 55 mVRMS @ 36db
Input Noise:	.21 mVRMS @ 2ms PG=36db, 1.6 mVRMS @ 2ms PG=12db (typ)
Anti-Alias Filters:	4 ms 103 Hz, 2 ms 206 Hz, 1 ms 412 Hz, .5 ms 825 Hz, .25ms 1650 Hz, .125ms 3300 Hz
Test Oscillator:	10, 25, 50, 60, 100, 125, 200, 250 Hz Amplitude adjustable in 10 mV steps
Instrument Tests:	Internal digital tests, battery voltage, internal voltage, crosstalk, amplifier pulse, CMR, amplifier noise, dynamic range, gain & phase similarity, system timing, communications, trigger verification
Line Tests:	Geophone pulse, geophone similarity, geophone resistance, cable leakage
Connectors:	Two 27-pin NK-27-21C connectors for geophone spread cable, 3-pin Bendix for trigger, two 6-pin Bendix for data, 3-pin Cannon for power
Power.	12 volts nominal. Standby: 60ma / Acquisition:12 Chs: 1A, 24 Chs: 2A
Physical:	10.5" x 13.5" x 6", 10 lb
Operating Temp:	-30 to 70°C

Рисунок 2.1.1.1 - Спецификация прибора RAS -24

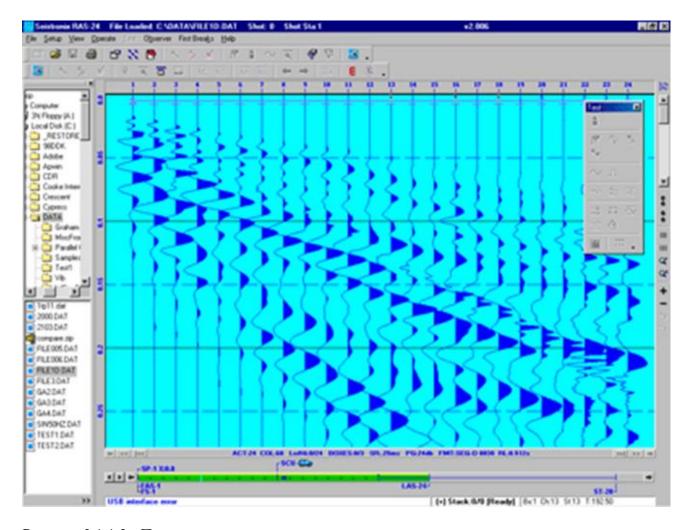


Рисунок 2.1.1.2 - Пример записи на компьютере.

24-канальный сейсмограф RAS 24 сейсмическое выполняет профилирование методом преломленных волн (MOB) c регистрацией продольных и поперечных волн, поляризованных в горизонтальной плоскости. Параметры расстановки: шаг между сейсмоприемниками 1,5 м, длина одной стоянки 41 м. Эта стоянка отрабатывалась по семиточечной системе, то есть пункты возбуждения упругих колебаний располагаются в начале, середине и в конце, выносные пункты возбуждения располагаются на расстоянии 3 м от крайних сейсмоприемников. Регистрируемый частотный диапазон от 15 до 300 Гц. Длина единичного профиля составляет 40 м.

Для возникновения в упругой среде сейсмической волны необходимо создать в некоторой точке среды механическое возбуждение. Упругие волны возбуждались с помощью источника типа «падающий груз», в частности использовалась обычная кувалда.

Для возбуждения волн удар кувалдой осуществлялся по металлической платформе (плашке), расположенной на поверхности земли. Плашка укладывалась горизонтально относительно поверхности земли.

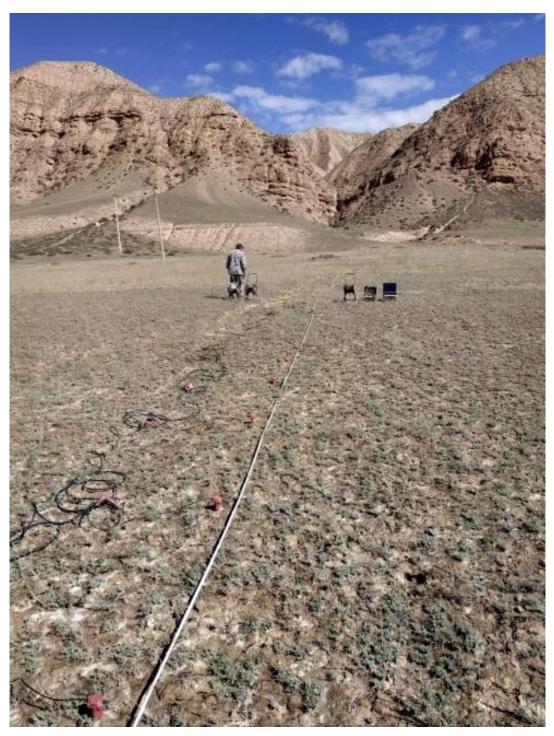


Рисунок 2.1.1.3 - Сейсмическая коса с шагом между пунктами приема 1,5 м., на ровной местности

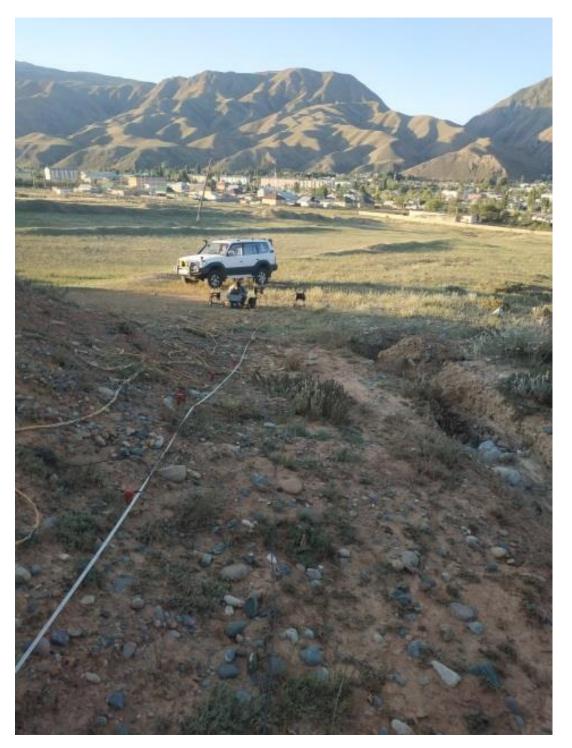


Рисунок 2.1.1.4 - Сейсмическая коса с шагом между пунктами приема 1,5 м., на склоне го Работа проводилась на территории города Нарын на 9 участках, для определения расположения разлома:

- 1. Восточный;
- 2. Поле;
- 3. Военная часть;
- 4. ул. Кулумбаева;

- 5. ул. Торобаева;
- 6. ул.Орозбакова, район школы им. К.Жакыпова;
- 7. ул. Боогачы западная часть;
- 8. Западный мост;
- 9. Западный.

Общая схема расположения 9 участков приведена на рисунке 2.1.22. Отдельно участки и их сегменты приведены на Рисунок.

Рисунок 2.1.1.5 - Схема расположения участков.

Рисунок 2.1.1.6 - Карта фактического материала при проведении работ на участке №1 Восточный (Ташкыя), участок разделен на 5 сегментов. Стрелкой показана направления сканирования. Расположение на космическом снимке линии (с координатами ϕ =41°25'56.05", λ =76° 2'42.83)

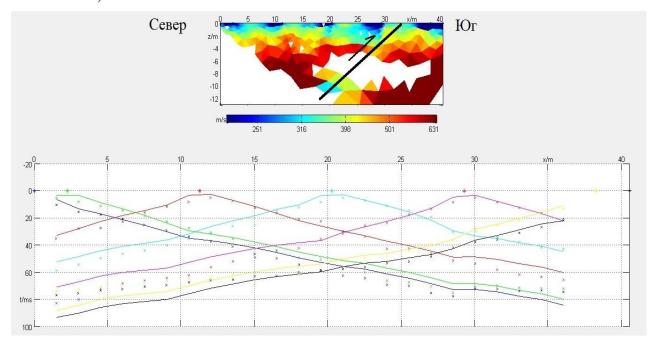


Рисунок 2.1.1.7 - Скоростной разрез и годографы первых вступлений Vs волн Восточного участка №1 Нарынского разлома, тип разлома является надвига. Угол падения разлома в пределах 20°-45° на север. Черной линией обозначена линия разлома. Чёрной стрелкой

обозначено висячее крыло разлома. Цветная шкала означает вероятные скорости Vs грунтов на глубинах до 13м. Сегмент 1.



Рисунок 2.1.1.8 - Положение Центрально-Нарынского разлома в районе старой автомобильной дороги Бишкек-Нарын. Видно, как красноцветные отложения палеоген-неогенового возраста надвинуты на галечники молодых аллювиальных отложений позднечетвертичной террасы р. Нарын. Это свидетельсвует об активности разлома. Угол падения разлома составляет здесь около 45°. Сместитель разлома наклонен на север.

Рисунок 2.1.1.9 - Карта фактического материала при проведении работ на участке №2 Поле, участок 4 сегмента. Стрелкой показана направления сканирования. Расположение на космическом снимке линии (с координатами φ=41°25'56.44", λ=76° 2'16.75"В)

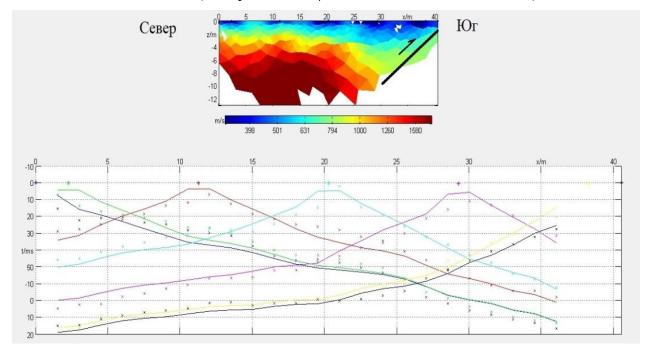


Рисунок 2.1.1.10 - Скоростной разрез и годографы первых вступлений Vs волн участка №2 «Поле» Нарынского разлома. Тип разлома - надвиг. Угол падения разлома в пределах 20°-45° к северу. Черной линией обозначена линия разлома. Чёрной стрелкой обозначена висячее

крыло разлома Разноцветная шкала означает вероятные значения скорости Vs грунтов на глубинах до 13м. Сегмент 2.

Рисунок 2.1.1.11 - Положение сейсмической косы в пределах поднятого крыла разлома.

Рисунок 2.1.1.12 - Карта фактического материала при проведении работ на участке №3 Военная часть, участок 6 сегментов. Стрелкой показана направления сканирования. . Расположение на космическом снимке линии (с координатами φ= 41°25'55.69", λ=76° 0'49.52")

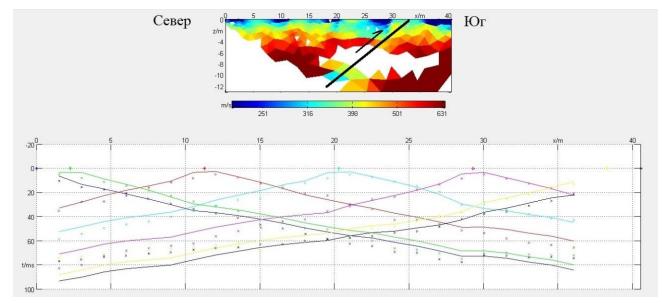


Рисунок 2.1.1.13 - Скоростной разрез и годографы первых вступлений Vs волн участка №3 Военная часть Нарынского разлома, тип разлома - надвиг. Угол падения разлома в пределах 20° - 45° к северу. Черной линией обозначена линия разлома. Чёрной стрелкой обозначена висячее крыло разлома Разноцветная шкала означает вероятные значения скорости Vs грунтов на глубинах до 13м. Сегмент 5

Рисунок 2.1.1.14 - Контакт между неогеновыми отложениями (холмы) и аллювиальными отложениями (равнина) является разломной зоной.

Рисунок 2.1.1.15 - Карта фактического материала при проведении работ на участке №4 и №5 ул. Кулумбаева и Торобаева ,каждый участок по 2 сегмента. Стрелкой показана направления сканирования. Расположение на космическом снимке линии (с координатами ϕ = 41°25'57.99", λ = 75°59'43.64")

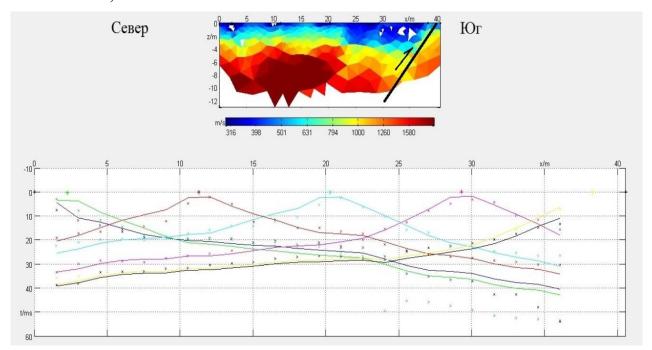


Рисунок 2.1.1.16 - Скоростной разрез и годографы первых вступлений Vs волн участка №4 и №5 Кулумбаева и Торобаева Нарынского разлома, тип разлома — надвиг. Угол падения разлома в пределах 20°-45° к северу. Черной линией обозначена линия разлома. Чёрной стрелкой обозначена висячее крыло разлома Разноцветная шкала означает вероятные значения скорости Vs грунтов на глубинах до 13м Сегмент 1

Рисунок 2.1.1.17 - Поднятое крыло разлома (на ближнем плане с фрагментами сейсмической косы), размытое деятельностью реки Нарын. Здания стоят на нижней террасе реки.

Рисунок 2.1.1.18 - Поднятое крыло разлома по ул. Кулунбаева

Рисунок 2.1.1.19 - Карта фактического материала при проведении работ на участке №6 ул.Орозбакова район школы им. К.Жакыпова, участок 4 сегмента. Стрелкой показана

направления сканирования. Расположение на космическом снимке линии (с координатами ϕ = 41°25'47.03", λ = 75°58'28.81")

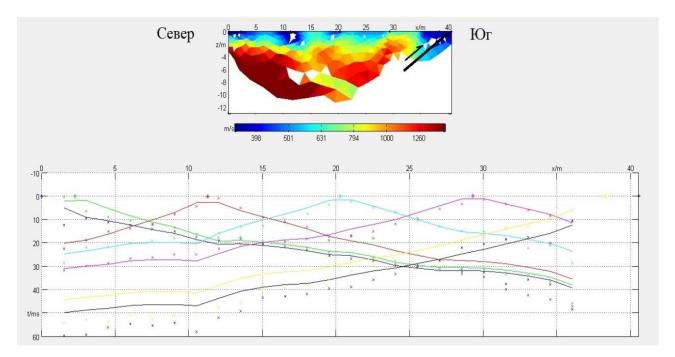


Рисунок 2.1.1.20 - Скоростной разрез и годографы первых вступлений Vs волн участка №6 ул.Орозбакова район школы им. К.Жакыпова Нарынского разлома, тип разлома — надвиг. Угол падения разлома в пределах 20°-45° к северу. Черной линией обозначена линия разлома. Чёрной стрелкой обозначена висячее крыло разлома Разноцветная шкала означает вероятные значения скорости Vs грунтов на глубинах до 13м. Сегмент 1.

Рисунок 2.1.1.21 - Карта фактического материала при проведении работ на участке №7 ул. Боогачы западная часть, участок 5 сегментов. Стрелкой показана направления сканирования. На этом участке разлом не обнаружен.

Рисунок 2.1.1.22 - Карта фактического материала при проведении работ на участке №8 Западный мост, участок 6 сегментов. Стрелкой показана направления сканирования.

Расположение на космическом снимке линии (с координатами ϕ = 41°25'52.03", λ = 75°57'17.99")

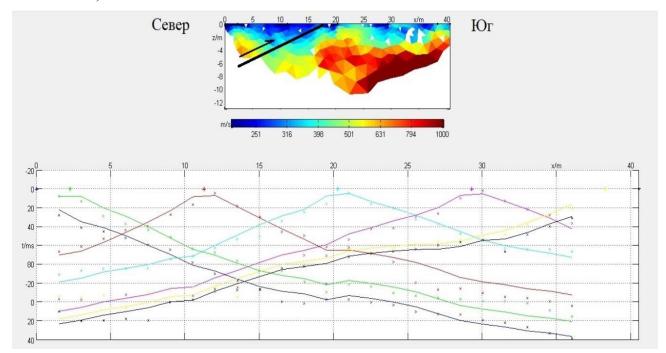


Рисунок 2.1.1.23 - Скоростной разрез и годографы первых вступлений Vs волн участка №8 Западный мост Нарынского разлома, тип разлома -надвиг. Угол падения разлома в пределах 20° - 45° к северу. Черной линией обозначена линия разлома. Чёрной стрелкой обозначена висячее крыло разлома. Разноцветная шкала означает вероятные значения скорости Vs грунтов на глубинах до 13м. Сегмент 3

Рисунок 2.1.1.24 - Зона разлома находится на контакте между неогеновыми отложениями (видны вверху на заднем плане) и пролювиальными отложениями. Сотрудник находится непосредственно на линии разлома.

Рисунок 2.1.1.25 - Карта фактического материала при проведении работ на участке №9 Западный, участок 8 сегментов. Стрелкой показана направления сканирования. Расположение на космическом снимке линии (с координатами ϕ = 41°26'20.31", λ =75°56'14.63") и (41°26'17.42", 75°56'13.18")

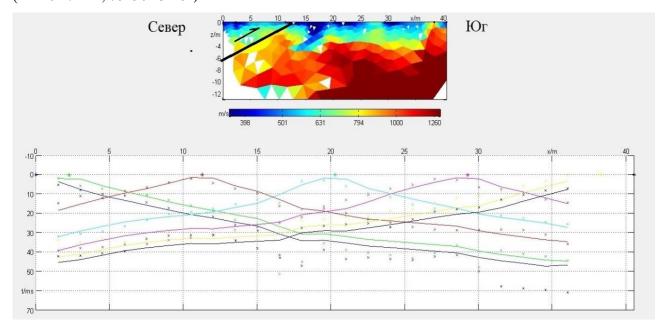


Рисунок 2.1.1.26 - Скоростной разрез и годографы первых вступлений Vs волн участка №9 Западный Нарынского разлома, тип разлома — надвиг. Угол падения разлома в пределах 20° - 45° к северу. Черной линией обозначена линия разлома. Чёрной стрелкой обозначена висячее крыло разлома Разноцветная шкала означает вероятные значения скорости Vs грунтов на глубинах до 13м. Сегмент 2 φ = $41^{\circ}26'20.31"$, λ = $75^{\circ}56'14.63"$

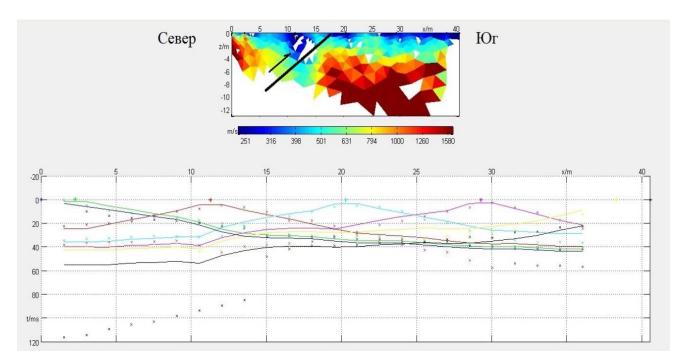


Рисунок 2.1.1.27 - Скоростной разрез и годографы первых вступлений Vs волн участка №9 Западный Нарынского разлома, тип разлома — надвиг. Угол падения разлома в пределах 20°-45° к северу. Черной линией обозначена линия разлома. Чёрной стрелкой обозначена висячее крыло разлома Разноцветная шкала означает вероятные значения скорости Vs грунтов на глубинах до 13м. Сегмент 5 φ=41°26′17.42″, λ=75°56′13.18″

Центрально-Нарынский разлом нами было изучено и определено точное место положения на западной окраине г. Нарын и на территорри Университета Ага-Хана. Разлом здесь выражен в рельефе на левом берегу Нарына в виде гряды, возвышающейся примерно на 10 м над 20-метровой надпойменной террасой Нарына и отделяющей поверхность террасы от русла реки (см. рис. 2.1.1.28).

Рисунок 2.1.1.28 - Активные разломы в западной части г. Нарын. Бергштрихами показано падение сместителей разломов. Вид с юго-востока. Изображение из Google Earth

Основные работы по изучению разломной тектоники на этом участке были сосредоточены непосредственно в пределах стройплощадки Университета и были нацелены на выявление и трассирование отдельных разрывов, с тем, чтобы избежать размещения строящихся зданий на разрывах (см. рис. 2.1.1.29). (Абдрахматов К.Е, Рахмединов Э.Э. 2018 [6], Рахмединов Э.Э. 2020 г.) [26].

Весьма характерной особенностью являлось подворачивание слоев, слагающих террасовые отложения. Разлом представляет собой надвиг, падающих к северу с параметрами: простирание 115° северо-восток и угол падения 25°, по которому глина неогена надвинуты на четвертичные галечники с песчаным заполнителем. Примерно в трех метрах от острия разрывы галечники опрокинуты и длинная ось отложений протягивается вдоль простирания разлома.

Рисунок 2.1.1.29 - Активные разломы в пределах стройплощадки Университета. Бергштрихи в сторону падения. Стрелками показано положение траншей. Цифры – номера траншей. Звездочкой показано место отбора образцов в уступе первой террасы р. Нарын.

Судя по характеру дислокаций в данном месте произошло более одного сильного землетрясения поверхностным разрывом, приведшее подворачиванию аллювиальных галечников. Более детальное описание будет приведено далее. Западнее г. Нарын Центрально-Нарынский разлом был детально изучен в обнажении на западном берегу р. Кажырты, где он пересекает 20-ти метровый уступ вкрест террасы Q_{III}^2 (см.рис 2.1.1.30), По висячему блоку разлома был пройден профиль в меридиональном направлении, который показал наличие резкого изгиба в 750 м севернее уступа (обозначенного "hinge" на РисунокВ) и антиклинальной складки около него. К северу от изгиба поверхность террасы падает в южном направлении под углом 0.9°, также как и уклон современной реки (см.рис 2.1.1.30.b). К югу от изгиба поверхность террасы почти горизонтальная, что свидетельствует об обратном наклоне, что мы связываем с изменением угла падения нижележащей плоскости разлома. В обнажении падение Центрально-Нарынского разлома составляет 37±2° к северу,

тогда как слои неогеновых отложений, выходящие на поверхность в висячем блоке, падают под углом 10° к северу (см.рис 2.1.1.30.а), Если наклон в висячем блоке определяется изменением падения Центрально-Нарынского разлома, то угол падения 37° север на поверхности уменьшается до 10° север на изгибе, приблизительно параллельно падению неогеновых отложений.

Точки замеров в районе уступа определяют поверхность террасы в висячем и в лежачем крыльях (см.рис 2.1.1.30.С). Так как нам известны расположение разлома и его падение, мы проецируем линии висячего и лежачего блоков на разлом, чтобы определить величину смещения. Определение возраста (C14) трех образцов угля, отобранных из горизонтов алевролитов и песков, перекрывающих галечниковые отложения, показало, что терраса Q_{III}² образовалась 13.5-15.5 тыс. лет назад. По этим данным скорость смещения по Центрально-Нарынскому разлому в позднечетвертичное время составляла 2.2+0.4/-0.3 мм в год (см.рис 2.1.1.30С).

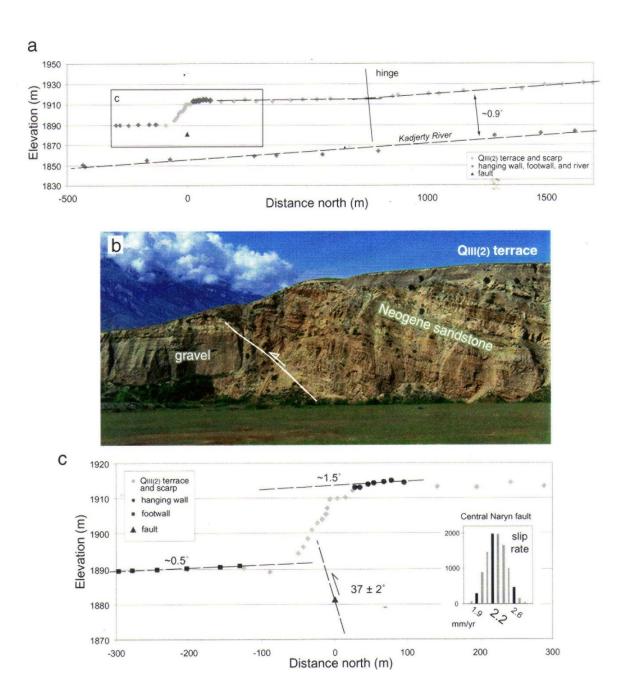


Рисунок 2.1.1.30 - Профиль контакта верхнего галечникового слоя террасы Q_{III}^2 по Центрально-Нарынскому разлому. Севернее шарнира уклон террасы и современной реки примерно одинаковы, а южнее поверхность террасы почти горизонтальная, что указывает на ее вращение в результате смещения по Центрально-Нарынскому разлому [8].

b). Выход на поверхность Центрально-Нарынского разлома вдоль р. Кажырты. Вертикальное смещение террасы $Q_{\rm III}^2$, сохранившейся в висячем и в лежачем крыльях, составляет около 20 м. Падение плоскости разлома составляет $37\pm2^\circ$ к северу. Угол падения неогеновых отложений в висячем крыле — $11-15^\circ$ к северу. Река течет в южном направлении. Более мощные позднечетвертичные

галечниковые отложения в лежачем блоке разлома указывают на то, что эродированная поверхность коренных пород была смещена больше, чем галечник на верху террасы $Q_{\rm III}^2$.

С). Увеличенный фрагмент профиля по уступу, показывающий точки замеров для определения висячего и лежачего блоков и их углы падения. Замеры в одной точке на выходящей на поверхность плоскости разлома использовались для расчетов скорости смещения. Разброс значений представлен на гистограмме [8].

2.2. Кажыртынский разлом

Севернее-Центрально-Нарынского разлома, в долине р. Кажырты, в рельефе четко виден Кажыртинский разлом. На восточной стороне долины р. Кажырты одноименный разлом пересекает 5 разновозрастных террас и имеет выраженный куммулятивный эффект. Самая низкая из этих террас QIV⁴ примыкает к современной пойме, в то время как самая высокая $Q_{\rm H}{}^2$ является водоразделом между долиной Кажырты и соседней долиной. Профили через уступ разлома, который пересекает широкую террасу Q_{III}^2 восточнее Кажырты, показывает вертикальное смещение, величина которого повышается от 8м на восточном конце до 12 м около западного края террасы. Профиль на западном конце террасы позволяет получить данные для подсчета скорости смещения по указаному разлому (см.рис 2.1), Так как плоскость разлома не обнажена в бортах долины, мы определили плоскость падения из измерений расположения уступа на склоне террасы Q_{III}^2 и смежной террасы Q_{IV}^2 . Используя средний тренд тектонического уступа на террасе Q_{III}^2 (66° CB) и террасы Q_{IV}^2 (71° CB) для построения простирания разлома получаем угол падения в 29±5° к северу. Неопределенность в падении состоит из 5° разницы в простирании над и под врезом и неопределенности в расположении разлома внутри уступа на верхней и нижней террасовой поверхности. Так как угол падения разлома был определен локального смещения террас, для расчета скорости смещения мы использовали профильные точки наиболее близкие к уступу (см.рис 2.2.1). Изменения в высоте и наклоне террасы над и под точками профиля возникли,

вероятно в результате надразломного складкообразования. Уменьшение высоты террасы на северном конце профиля совпадает с уменьшением падения разлома от 29° на поверхности до 10° (см.рис 2.2.1). Вдоль простирания уступа разлома уменьшение вертикального смещения от 12 до 9 м совпадает с падением разлома, который уменьшается от 29° на западном конце террасы до 19° на восточном конце террасы.

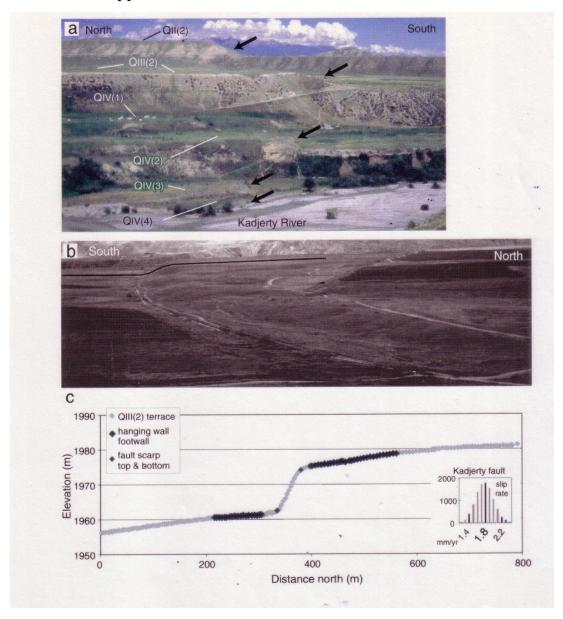


Рисунок 2.2.1 - Кажыртинский разлом в долине р. Кажырты. (Абдрахматов К.Е, Рахмединов Э.Э. 2020) [7].

а) Вид на восточный борт долины р.Кажырты. Черными стрелками показано положение уступа разлома. Высота уступа, смещающего террасу $Q_{\rm II}^2$ на горизонте, составляет около 80 м. в) Вид на запад с террасы $Q_{\rm II}^2$ на террасу $Q_{\rm III}^2$,

смещенную разломом. Положение профиля указанного на. (см.рис 2.2.1. С), С), указано черной линией. Большие ромбики показывают точки, использованные для определения поверхностей на поднятом крыле и опущенном крыле; маленькие ромбы показывают вершину и подошву уступа разлома. На врезке показана гистограмма распределения скорости смещения.

Три радиоуглеродных определения возраста дали время врезания, время оставления поймы и формирование Q_{III}^2 террасы вдоль долины р. Кажырты. Эти образцы дали возраст 13.7-15.3 тыс. лет для контакта террасового галечника Q_{III}^2 . При внесении параметров, отмеченных выше получаем скорость смещения равную 1.8±0.4 мм/год. Вертикальное смещение террасы с возрастом около 141 тыс. лет Q_{II}^2 составляет 65-90м (см.рис 2.2.1. а). Угол падения разлома, оцененный нами в 19°C на врезе между Q_{III}^2 и Q_{II}^2 террасами и величина смещения террасы Q_{II}^2 , дает скорость смещения 1.4-2.0 мм/год, такую же, как и скорость смещения террасы Q_{III}^2 . (Абдрахматов К.Е, Рахмединов Э.Э. 2020) [7].

В долине р. Куртка указанный разлом смещает широкую террасу Q_{III}^2 и другие вложенные террасы в долине р. Куртка (см.рис 2.2.2). На западной стороне долины уступ пересекает террасу под углом 89°CB. К востоку от реки уступ уменьшается в высоте и исчезает в бортах долины, а погребенное продолжение разлома устанавливается по резкому топографическому контакту, который совпадает с синклинальной осевой поверхностью. Хотя мы не картировали разлом между долиной Куртка и Кажырты на расстоянии около 50 км, однако полагаем, что это один и тот же разлом, основываясь на равном расстоянии (около 7 км) от фронта хр. Молдо-Тоо и схожей величины общего сокращения, видимой в палеоген-неогеновых отложениях поднятого крыла разлома.

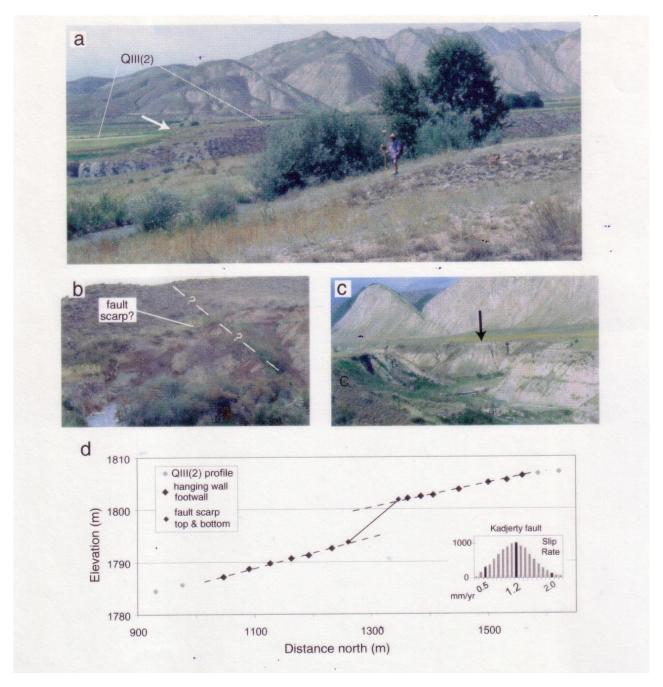


Рисунок 2.2.2 - Кажыртинский разлом в долине Куртка.

- A) Вид на западный борт долины р. Куртка в пределах предгорий и разлом, смещающий террасы $Q_{\rm III}^2$ и $Q_{\rm III}^{\rm III}$ (показан белой стрелкой).
- b) Показано положение Кажыртинского разлома на западном борту долины. Смещение врезанной террасы подчеркивается резкими изменениями в высоте террасы. Высота уступа примерно 2 м.
- С) Вид на северо-восток террасы $Q_{\rm III}^2$. Стрелкой показано положение обнажения, где был отобран образец на определение возраста.

d) Профиль, пройденный по контакту галечника террасы и покрывающих суглинков в зоне разлома. На врезке- диаграмма, показывающая распределение скоростей смещений.

Профилирование контакта между галечником и тонкозернистыми отложениями террасы Q_{III}^2 на западном борту долины р. Куртка, выявило вертикальное смещение 6 ± 3 м (см.рис 2.2.2). Две точки, в которых было проведено профилирование, позволяют установить падение разлома. Уступ, смещающий террасу Q_{III}^2 , является точкой, которая маркирует верхнее положение разлома. В русле разлом должен лежать севернее полого лежащих слоев четвертичного аллювия, который обнажается под Q_{III}^2 уступом, что показывает - угол падения разлома должен быть меньше, чем 40° Север. Небольшой фрагмент цокольной террасы, врезанной в поверхность Q_{III}^2 , на 2 м выше ее южной опущенной части, что позволяет уточнить нижнее положение разлома, который вероятнее всего, имеет угол падения $20\pm5^{\circ}$ С. Наличие многочисленных родников и маленьких оползней позволяет предполагать, что именно смещение разлома Кажырты привело к изменению в высоте цоколя.

Два образца угля, собранных из одного и того же обнажения, приблизительно в 5 - 10 см над галечниковым контактом террасы Q_{III}^3 на восточной стороне реки, имеют статистически близкий радиоуглеродный возраст (см.рис 2.2.2). Калиброванный возраст объединенного радиуглеродного возраста составляет 13.8-15.4 тыс. лет. Террасы Q_{III}^2 и Q_{III}^3 на восточной стороне реки смещены на одинаковую величину, что свидетельствует о формировании уступа во время одного и того же землетрясения. Учитывая эти наблюдения и тот факт, что возраст террасы Q_{III}^3 совпадает с возрастом террасы Q_{III}^2 в долине р. Кажырты, мы полагаем, что формирование террасы Q_{III}^3 происходило во время врезания и оставления террасы Q_{III}^2 в долине р. Куртка.

Среднее вертикальное смещение уступа разлома на западной стороне реки, угол падения разлома, равный $20\pm5^{\circ}$ и минимальный возраст террасы,

составляющий 13.8-15.4 тыс. лет, дают скорость смещения в 1.2+0.8/-0.7 мм/год (см.рис 2.2.2.)

50). Положение разлома на восточном берегу реки неясно, но угол падения около 13° можно считать допустимым. Этот угол и четырехметровое вертикальное смещение террасы Q_{III}^{2} и Q_{III}^{3} на восточном борту долины дают похожую скорость смещения. Скорость 1.2 мм/год сравнима со скоростью измеренной на разломе в долине р. Кажырты.

2.3. Нуратооуский разлом

Морфологическое описание

Яркие проявления молодых тектонических движений по разрыву, отделяющему восточную часть Алабуга-Нарынской межгорной впадины от расположенных севернее новейших поднятий хребтов Джетимтоо и Нуратоо, прорезанных глубокой долиной Малого Нарына, были обнаружены К.Е. Абдрахматовым и И.Н. Лемзиным в 80-х годах прошлого века (Абдрахматов, Лемзин, 1989) [1]. Следы молодых смещений уверенно прослеживаются на протяжении 27 км, возможно даже более, до 32 км - на крайний восточный участок мы не располагаем снимками достаточно высокого разрешения (см.рис 2.3.1). Максимальная высота "обратного" уступа, достигающая примерно 10 м, наблюдается в западной – Нуратооусской части (см.рис 2.3.2). При этом на всем протяжении разрыва поднято его южное, подгорное крыло (см.рис 2.3.2 - см.рис 2.3.4), т.е. для разрыва характерна сбросовая кинематика подвижек, при том, что регион в целом развивается в условиях поперечного сокращения и большинство разрывов здесь – взбросы и надвиги. Надвиговые смещения того же возраста (позднечетвертичные) характерны, в частности, для Центрально-Нарынского разлома, проходящего примерно в 10 км южнее и имеющего аналогичное – субширотное, простирание. Надвигом является и новейший разлом, отделяющий поднятие хребтов Нуратоо и Джетимтоо от Алабуга-Нарынской впадины, в зоне которого и находится дислокация Нуратоовского разрыва. Отметим также, что

по разрыву Нуратоо имеются и явные признаки сдвиговых смещений, причем если вдоль западной (Нуратооусской) части разрыва левосторонних (висячее — нагорное крыло перемещалось на запад - рисунок 2.3.5), то для его восточной (Джетимтооусской) части наоброт — правосторонних — движение нагорного крыла к востоку (см.рис 2.3.6).

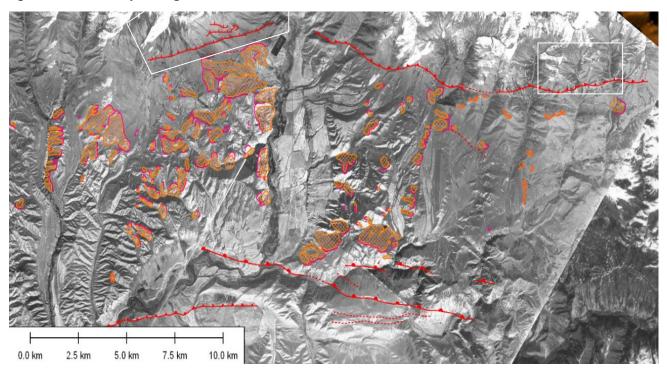


Рисунок 2.3.1 - Молодые разрывы и оползни между южным подножием хребтов Нуратоо и Джетимтоо и долиной реки Нарын. Схема дешифрирования космических снимков КФА-3000. Оконтурены участки, трехмерные изображения которых показаны на (см.рис 2.3.2 и 2.3.3),

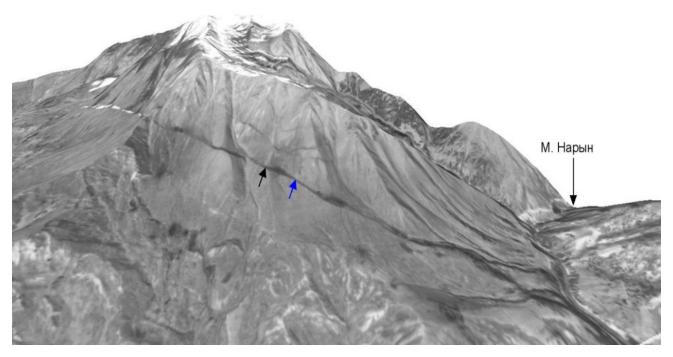


Рисунок 2.3.2 - Разрыв у подножия хр. Нуратоо к западу от долины р. Малый Нарын. Трехмерное изображение, построенное по космическому снимку, наложенному на ЦМР. Черной стрелочкой отмечено место отбора образца №4, синей — образца № 5. Выше по склону видны оперяющие разрывы [28].

Обращает на себя внимание и то, что непосредственно в долине Малого Нарына, пересекаемой разломом, к которому приурочена дислокация Нуратоо, на террасе высотой около 90 м разрыв практически никак не выражен (см.рис 2.3.7). При этом эта терраса заведомо более древняя, чем формы рельефа и поверхности, разорванные и западнее, и восточнее, где разрыв проходит на более высоких отметках (см.рис 2.3.2 - 2.3.6, 2.3.8).

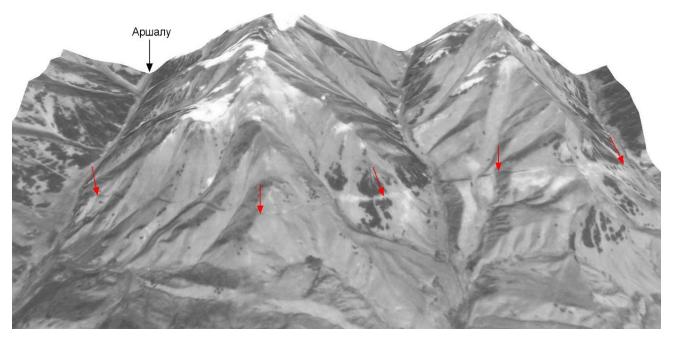


Рисунок 2.3.3 - Разрыв у подножия хр. Джетимтоо восточнее верховьев ручья Аршалу Уступ разлома отмечен стрелочками. Трехмерное изображение, построенное по космическому снимку, наложенному на ЦМР [28].

Рисунок 2.3.4 - Уступ дислокации Нуратоо, обращенный вверх по склону. Вид на восток на долину р. Малый Нарын и хр. Джетимтоо [28].

Явная аномальность молодого разрыва дислокации Нуратоо – нетипичная сбросовая кинематика вертикальных смещений, непостоянство направления сдвига в разных частях разрыва при постоянстве его простирания, исчезновение морфологически выраженного разрыва в нижнем ярусе рельефа — все это позволяет предположить, что молодые разрывы у подножия хребтов Нуратоо и

Джетимтоо представляют собой не самостоятельную сейсмогенерурующую структуру, а являются вторичными дислокациями по отношению к основному — Центрально-Нарынскому разлому.

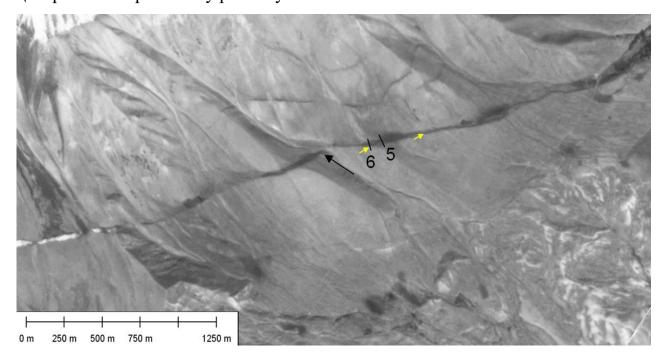


Рисунок 2.3.5 - Признаки левого сдвига по западной (Нуратоуской) части разрыва Нуратоо. Черная стрелочка указывает на сдвинутую влево ложбину с разной высотой уступа, проявленного на разновозрастных террасах; показано положение топографических профилей 6 (3.1.2.10.) и (1.2.11). и мест отбора проб для определения возраста подвижек (желтые стрелочки) (см. также рисунок 2.3.5) [28].

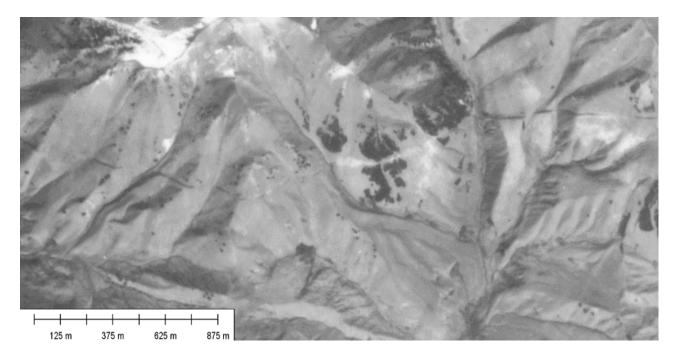


Рисунок 2.3.6 - Признаки правого сдвига по восточной части разрыва Нуратоо. Уступы, обращенные вверх по склону, намного ярче выражены на склонах долин и оврагов западной экспозиции, что указывает на провостороннее смещение висячего крыла.

Формирование таких вторичных разрывов можно объяснить следующим образом. Земная кора Тянь-Шаня в целом находится под действием внешних сил, формирующих такое поле напряжений, при котором ось сжатия ориентирована субгоризонтально вкрест простирания современных структур (Гущенко, 1979 [16]. Чедия, 1986 [40], Садыбакасов, 1972) [55]. Однако, тангенциальное сжатие может непосредственно проявляться лишь ниже регионального уровня эрозионного вреза, где смежные по латерали блоки способны передавать внешнее усилие. С этим согласуется то, что молодые субширотные разрывы, выходящие на поверхность в нижнем ярусе рельефа, имеют закономерную надвиговую или взбросовую кинематику. Эписентры землетрясений также расположены ниже этого уровня.

Выше же уровня эрозионного вреза, в пределах горных хребтов, ограниченных свободной поверхностью как сверху, так и с боков, напряженно-деформированное состояние должно быть иным. Как показано в работе (Марков, Савченко, 1984) [24]. на уровне местного базиса эрозии оно изменяется — ниже дна долин горизонтальное сжатие резко возрастает по сравнению с напряжениями в выше расположенных массивах. При этом ось сжатия в нагорных участках ориентирована вдоль простирания хребтов (склонов), вне зависимости от ее ориентировки в более глубоких частях коры.

Иными словами, выше уровня регионального эрозионного вреза горизонтальное сжатие вкрест простирания склона минимально, а при определенных условиях в этом направлении может проявляться горизонтальное растяжение. При этом на основание хребта действуют значительные вертикальные нагрузки, обусловленные весом пород, слагающих эту положительную форму рельефа.

Рисунок 2.3.7 - Левый борт р. Малый Нарын на пересечении с разрывом Нуратоо. Сплошными красными стрелочками показано положение разрыва, прослеживаемого на аэрофотоснимках.

В "обычных" условиях уровень напряжений в основании хребта не превосходит прочности пород, в противном случае горы "раздавили бы сами себя". Значительные деформации обычно происходят при проходке горных выработок, когда за счет быстрого снятия нагрузки на локальных участках происходит перераспределение напряжений, приводящее к горным ударам, стрелянию пород, деформациям выработок и т.п. Однако причиной изменений напряженно-деформированного состояния, причем сразу в колоссальных по объему массивах, могут являться и сильные землетрясения, которые, с одной сопровождаются значительными неупругими деформациями в стороны, очаговой области, а с другой – сейсмическими воздействиями, обусловленными распространением сейсмических волн. При землетрясении к постоянно действующей статической нагрузке основании сооружений В горных прибавляется нагрузка, возникающая при движении с ускорением, как при прохождении упругих волн, так и при подвижке по очаговому разрыву. Под воздействием этих сил хребет как бы проседает, а подвижки по существующим или новообразованным плоскостям скалывания вдоль подножий горных хребтов

могут иметь именно сбросовый характер, формируя вышеописанные "обратные уступы". Заметим, что даже если сейсмогенное проседание хребта и не приводит к формированию морфологически выраженных обратных уступов, оно нередко фиксируется геодезическими измерениями. Так, например, после сильного Жаланаш-Тюпского землетрясения 1978 г. (М = 6.5) пригребневая часть хр. Кунгей-Алатау просела на 212 мм по системе разломов, выкалывающих узкий грабен (Абдрахматов, 1995) [3]

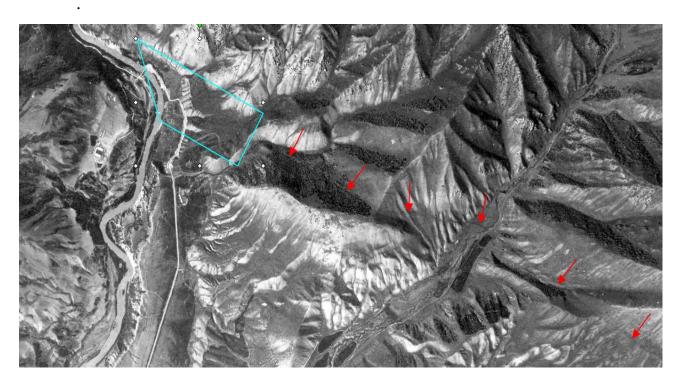


Рисунок 2.3.8 - Фрагмент аэрофотоснимка участка дислокации Нуратоо на пересечении с долиной Малого Нарына и непосредственно к востоку от нее. Выраженный в рельефе молодой разрыв обозначен красными стрелочками; голубой линией оконтурен участок, показанный на рисуноке 2.3.7, где разрыв не проявлен в рельефе.

Заключения; Произведена оценка сейсмической опасности активных разломов, расположенных в непосредственной близости от основных сооружений проектируемого Верхне-Нарынского каскада ГЭС. Анализ всей свокупности палеосейсмологических данных позволяет считать, что в восточной части Нарынской впадины возможны землетрясения с магнитудами в диапазоне 7.0 — 7.5. Фоновая интенсивность сейсмических воздействий на площадках основных сооружений этих гидроузлов составляет 9 баллов.

Глава 3 Оценка сейсмической опасности территории Восточной части-Нарынской впадины.

Ha Центрального Тянь-Шаня территории за весь период инструментальных наблюдений и за период, за который имеются исторические сведения о землетряениях (порядка 200 лет), не зафиксировано ни одного землетрясения с магнитудой более 5.5 и интенсивностью свыше 7 баллов. Единственно исключение – Суусамырское землетрясение 1992 г. с М=7.3 на западной периферии этой области (Богачкин и др., 1997, Ghose et al., 1997). Все остальные очаги известных разрушительных землетрясений на Тянь-Шане сосредоточены вблизи его внешних границ к северу от озера Иссык-Куль, вдоль южного фаса (в КНР) и к западу от Таласо-Ферганского разлома (Рисунок 3.1). В территория Центрального Тянь-Шаня ТО же время, насыщена многочисленными молодыми разрывами и разнообразными вторичными дислокациями, уверенно интерпретируемыми, как палеосейсмодислокации сильных высокомагнитудных землетрясений (Абдрахматов, 1995; Абдрахматов, Лемзин, 1989,1990, Корженков, 2006).

В отсутствие сведений о сильных исторических землетрясениях, сейсмический потенциал вышеописанных 30H активных разломов, рассматриваемых в качестве сейсмогенерирующих структур, можно оценить по палеосейсмологическим на основании соотношений данным между протяженностью молодых разрывов и величиной единовременных подвижек по ним с одной стороны и магнитудой землетрясений с другой (Wells, Coppersmith, 1994, Стром, Никонов, 1997, 1999, Стром, 1998, Лунина, 2001).

Однако при этом необходимо учитывать, что все надежные зависимости связывают магнитуду с протяженностью участка разрыва, испытавшего единовременное вспарывание (L), а также с максимальной (D_{max}) или со средней (средневзвешенной – D_{av}) величиной единовременной подвижки. Эти параметры достаточно уверенно определяются при обследовании сейсмогенных разрывов

современных землетрясений, но намного сложнее устанавливаются при изучении палеосейсмодислокаций.

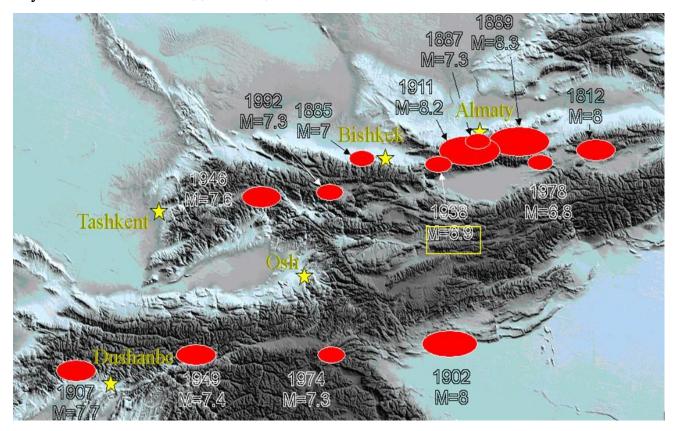


Рисунок 3.1 - Очаги сильнейших землетрясений Тянь-Шаня

Указаны годы возникновения и магнитуды землетрясений. Желтым прямоугольником оконтурен район расположения гидроузлов Верхне-Нарынского каскада ГЭС.

Протяженность участков разрывов, вскрывшихся при отдельных землетрясениях, можно оценить по длине морфологически выраженного уступа, нарушающего одновозрастные поверхности выравнивания или мелкие формы рельефа. Однако надо учитывать, что геолого-геоморфологические данные позволяют судить о возрасте этих образований и выдеять одновозрастные образования с точностью, в лучшем случае, до веков или тысячелетий. Более точные данные могли бы быть получены при проведении детальных траншейных исследований во многих пунктах по простиранию разрыва, с отбором образцов и их датированием для определения возраста подвижек, установленных в каждой траншее. Ниже приводятся результаты траншейных исследований, проведенных в районе строительства предполагаемого каскада ГЭС

3.1. Детальные траншейные исследования в целях оценки повторяемости сильных землетрясений

3.1.1. Участок Малый Нарын

Уступ Центрально-Нарынского разлома был детально изучен на участке, расположенном чуть ниже слияния р. Малый Нарын с долиной р. Нарын. На этом участке было сделано несколько профилей через приразломный уступ (см.рис 3.1.1.3 - 3.1.1.5) и он был вскрыт траншей протяженностью 20 м, глубиной и шириной, примерно, по 3 м (см.рис 3.1.1.1) Траншея была пройдена экскаватором на участке профиля 7 (см.рис 3.1.1.2).

Рисунок 3.1.1.1 - Общий вид траншеи, пройденной через уступ Центрально-Нарынского разлома. Красными стрелочками отмечены вскрытые плоскости разрывов. Видна разметка с шагом 1 метр

Для документации выбрана восточная стенка траншеи, которая была размечена сеткой 1×1 м, тщательно сфотографирована и задокументирована. При полевой документации фиксировались основные границы пачек, а ориентировка галек подробно отРисунокована в ходе обработки фотодокументации. Профиль склона

на участке проходки траншеи увязан с протяженным профилем, построенным с помощью ручного нивелира через приразломный уступ (см.рис 3.1.1.5).

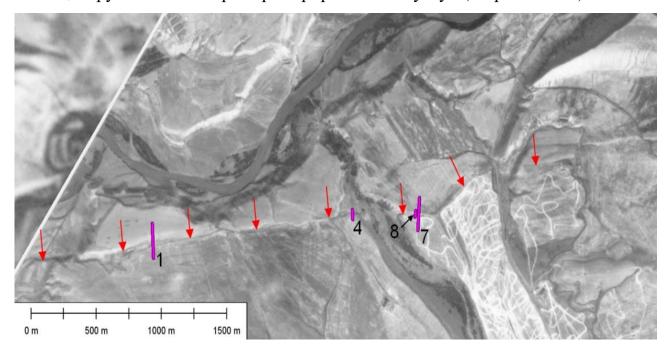


Рисунок 3.1.1.2 - Положение топографических профилей 1, 4, 7, 8, пройденных через уступ Центрально-Нарынского разлома

Линия приразломного уступа на космоснимке КФА-3000 обозначена красными стрелочками. Профиль 7 совмещен с траншеей. см. рис 3.1.1.5.

Как склон приразломного уступа, так и его подножие на этом участке сложены мелко и среднегалечными отложениями с галькой разной степени окатанности, преимущественно хорошо окатанной, с песчано-гравийным заполнителем. Размер редких, наиболее, крупных галек до 10-15 см. В разрезе много уплощенных галек, они хорошо маркируют зоны разрывов, так как в ходе тектонических деформаций были переориентированы. Песчано-гравийные отложения местами образуют линзы и, даже, относительно изометричные включения. Описанные отложения генетически представляют собой аллювопролювий конуса выноса р. Каинды. Они перекрыты желтовато-серыми лессовидными суглинками мощностью до 1.2 м с редкими мелкими гальками и обломками. Наличие таких покровных суглинков характерно для поверхности слившихся конусов выноса постоянных и временных водотоков, прорезающих северный склон поднятия хр. Нарынтау. Вся эта последовательность нарушена

разрывами на двух участках. Один из этих участков находится, практически, в основании склона, а второй выходит на склон в 2 метрах выше его подножия (см.рис 3.1.1.6). Амплитуда смещения по направлению подвижки составляет 2.4 м по нижнему разрыву и не менее 3.2 м по верхнему, при этом подвижка по верхнему разрыву, в отличие от нижнего, сопровождалась изгибными деформациями. Отметим, что изгибные деформации совершенно не затронули блок, образующий лежачее крыло верхнего разрыва, судя по горизонтальному положению подошвы лессовидных суглинков. Вертикальная составляющая подвижек составляет, соответственно, 1.1 и 1.8 м. Если считать, что вся высота уступа на этом участке соответствует подвижкам по этим двум плоскостям разрывов, то вертикальная составляющая подвижки по верхнему разрыву, с учетом изгиба его висячего крыла, могла достигать 5-6 метров. Нельзя, однако исключить, что на верхнем участке могла иметь место не одна подвижка. В пользу такого предположения говорит широкая зона деформаций над условной "плоскостью" верхнего разрыва, что существенно отличает ее от узкой зоны мелких ориентированных галек, маркирующей сместитель нижнего разрыва (см.рис 3.1.1.6, 3.1.1.7). Более того, анализ строения разреза, вскрытого в траншее, показал, что можно предположить наличие еще двух плоскостей смещения. Одна из них может выходить на дневную поверхность выше по основному склону приразломного уступа; вторая, выраженная в рельефе в виде низкого – менее одного метра высотой – пологого уступа, проходит примерно в 15 метрах севернее верхнего края траншеи (см.рис 3.1.1.13). Для проверки обоснованности такого предположения, примерно, в 25 метрах к западу от траншеи был пройден еще один нивелирный профиль, на котором отмечалось появление и исчезновение на склоне уступа высыпок гальки среди покрывающих его лессовидных суглинков. Этот профиль, совмещенный с разрезом траншеи, показан на (см.рис 3.1.1.13). Как показало изучение разреза, вскрытого в траншее, при амплитуде вертикального смещения, превышающей мощность покровных суглинков, на поверхность приразломного уступа выводятся подстилающие их галечники, которые образуют высыпки на склоне. Появление

таких высыпок и их исчезновение ниже по склону может указывать на выход разрыва с достаточно большой амплитудой подвижки на склон уступа, что и показано на рисунке 3.1.1.13. Поскольку траншея была пройдена на участке, где общая высота приразломного уступа составляла около 8 м (см.рис 3.1.1.6), а в 2 км западнее она увеличивается примерно до 16 м (наиболее крутая часть уступа имеет высоту, соответственно, 6 м и 14 м), можно полагать, что амплитуды одноактных подвижек там были существенно больше, чем на участке, где пройдена траншея и могут рассматриваться, как максимальные (см.рис 3.1.1.3). В принципе, заметный наклон подошвы лессовидных суглинков в поднятом верхнего разрыва, вскрытого в траншее, позволяет объяснить значительную общую высоту уступа на участке траншеи (~ 6-7 м) за счет подвижек только по двум плоскостям разрывов. Однако, на участке, где общая высота уступа составляет примерно 16 м, в этом случае приходится принять величину единовременной вертикальной подвижки по верхнему разрыву в 10-12 м, что превышает максимальную величину единовременных подвижек по сейсмогенным разрывам протяженностью ~ 45 км, которая, как будет показано ниже, предполагается для рассматриваемого разлома (см.рис 3.1.1.14). Это обстоятельство, в сочетании с вышеотмеченным распределением выходов галечников на склоне приразломного уступа и строением зоны "верхнего" разрыва в траншее указывает на высокую вероятность того, что движения по Центрально-Нарынскому разлому в большей мере соответствовали модели "характерного землетрясения", когда и магнитуды событий и величины единовременных подвижек при повторяющихся землетрясениях достаточно близки (Swartz, Coppersmith, 1984). В таком случае 16-метровая высота уступа на участке с максимальным смещением могла накопиться за 4-5 подвижек со средней максимальной амплитудой вертикальных смещений ~4 м за событие. Даже если принять, что соотношения между величиной больших и меньших подвижек на этом участке такое же, как и на участке, где была пройдена траншея, т.е. они могут различаться примерно в 2 раза, то максимальное одноактное вертикальное смещение не превысит 5-6 метров, что вполне согласуется с

ожидаемой горизонтальной протяженностьо поверхностного разрыва (точнее, очага землетрясения).

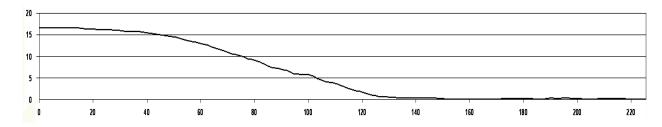


Рисунок 3.1.1.3. Профиль 1

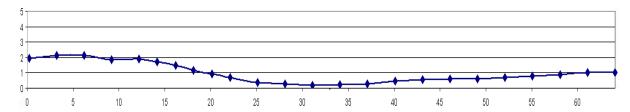


Рисунок 3.1.1.4. Профиль 4. Ромбиками обозначены пикеты, по которым проводились измерения

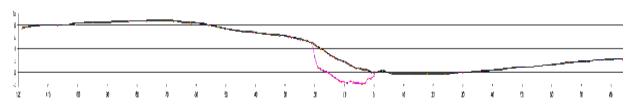


Рисунок 3.1.1.5. Профиль 7 совмещенный с разрезом траншеи

Топографический профиль проходил вдоль восточного края траншей, велась документация

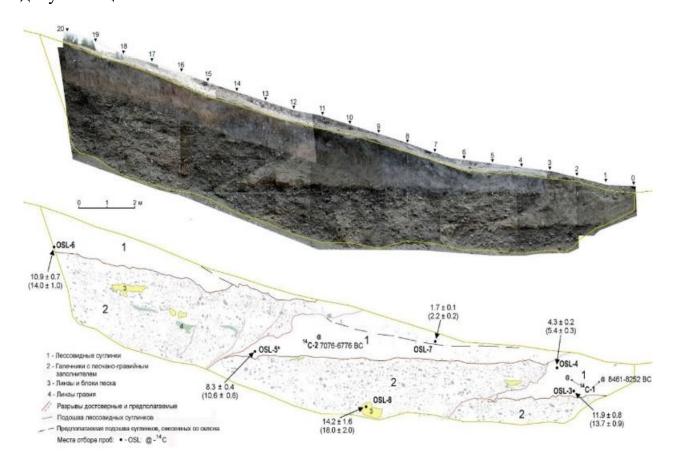
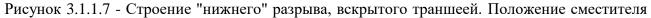



Рисунок 3.1.1.6 - Разрез траншеи и её схема с указанием места отбора образцов и их абсолютного возраста, пройденной в районе планируемых створов ГЭС.

отмечено красными стрелочками.

С целью определения оценки сейсмической опасности региона нами был применён метод «тренчинга», т.е. пройдена траншея в крест простирания зоны разрыва, которой были вскрыты разрез четвертичных отложений и разрывные нарушения (см.рис 3.1.1.6). Отбор образцов на абсолютный возраст позволил восстановить картину тектонического развития (смещение пород по разрывам) данного региона и представить её в виде анимации.

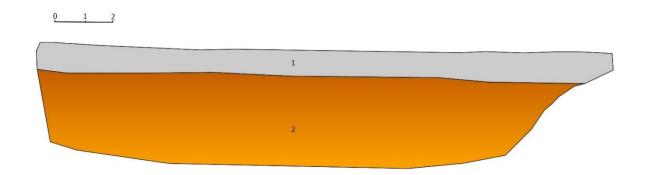


Рисунок 3.1.1.8 - Показан разрез траншее, который вероятно имел вид до первого сейсмического события.

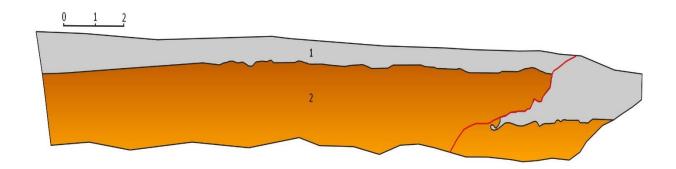


Рисунок 3.1.1.9 - Показан разрез, смешения после первого сейсмического события

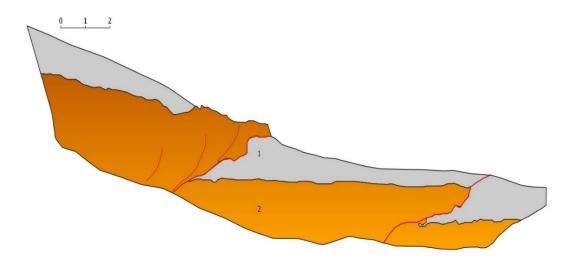


Рисунок 3.1.1.10 - Показан разрез, смешения после второго сейсмического события

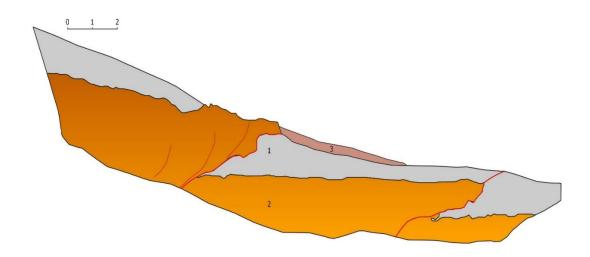


Рисунок 3.1.1.11 - Показан разрез с коллювияльным клином

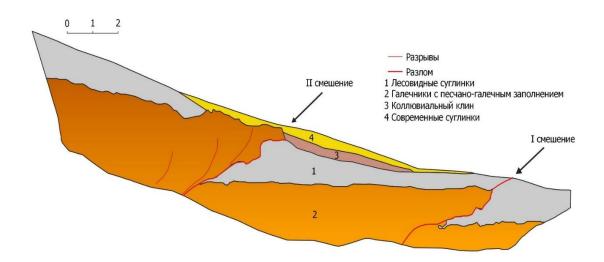


Рисунок 3.1.1.12 - Показан разрез с современным заполнением суглинок

Амплитуда горизонтального смещения составляет 2.4 м по нижнему разрыву и не менее по верхнему 3.2 м. Вертикальная составляющая подвижек составляет, соответственно, 1.1 и 1.8 м. Если считать, что вся высота уступа на этом участке соответствует подвижкам по этим двум плоскостям разрывов, то вертикальная составляющая подвижки по верхнему разрыву, с учетом разрыва его висячего крыла, могла достигать 5-6 метров.

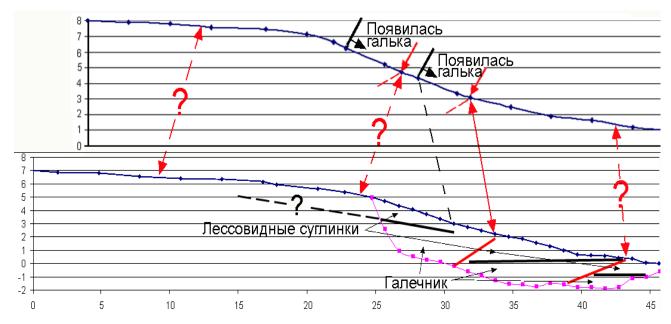


Рисунок 3.1.1.13 - Совмещенные профили, пройденные по восточной стенке траншеи (внизу) и в 25 метрах к западу от ее оси (вверху).

Внизу: малиновая линия с точками – профиль по дну траншеи с шагом 1 м; жирные черные линии – подошва лессовидных суглинков, вскрытая в траншее и предполагаемая (пунктир); красные линии – сместители молодых разрывов, вскрытые в траншее.

Вверху: жирные черные линии с перпендикулярными к ним стрелками — места, где на склоне появляются многочисленные гальки, что может соответствовать галечникам, выведенным на дневную поверхность в висячих крыльях разрывов; красные стрелочки указывают на места, где галька почти пропадает, что может соответствовать плоскостям разрывов, ниже которых (в опущенных крыльях) залегают покровные лессовидные суглинки.

Двойные сплошные и пунктирные красные стрелки указывают на достоверное и предполагаемое положение плоскостей разрывов.

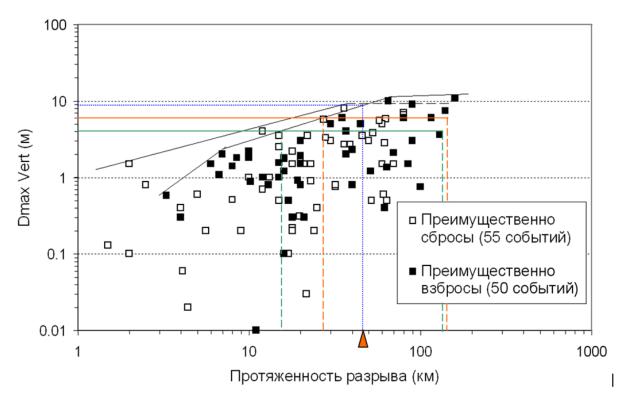


Рисунок 3.1.1.14 - Соотношение протяженности сейсмогенных разрывов и максимальной вертикальной подвижки по ним(Стром, 1998).

Показаны интервалы длин разрывов (взбросов) с максимальным смещением 4 м (зеленые линии) и 6 м (оранжевые линии). Треугольником отмечена принятая длина очаговой зоны, равная 45 км; синим точечным пунктиром – предельное смещение, соответствующее такой протяженности (см.рис 3.1.1.14).

Достаточно большое расстояние между сместителями плохая выраженность отложений, которые можно было бы трактовать, коллювиальные клинья – следы разрушения поднятых крыльев разрывов, отложившиеся и захороненные на их опущенных крыльях – не позволяют уверенно говорить, подвижка (подвижки) по какой из двух вскрытых плоскостей происходила раньше, а какая позже. Осадконакопление на этом участке, судя по всему, закончилось с формированием толщи покровных лессовидных суглинков, которое завершилось еще до подвижек по разрывам, выявленным в траншее. Рыхлые мелкозернистые отложения висячих крыльев - надвигов разрушались как вод-ной, так и ветровой эрозией, вследстие чего коллювиальные клинья практически не сохранились.

Обычно, при формировании надвигов В результате серии последовательных подвижек, поверхности смещения, соответствующие более молодым подвижкам, выходят на поверхность выше по склону (см.рис 3.1.1.15). Однако в нашем случае последовательность движений была, по-видимому, иная. Это удалось установить на участке пересечения Центрально-Нарынского разлома с долиной р. Каинды в 500 м западнее траншеи (см.рис 3.1.1.16, и см.рис 3.1.1.17). В долине этой реки, в настоящее время практически полностью разбираемой на орошение, хорошо выражены две террасы – Т2 высотой 12-13 м, представляющая собой поверхность конуса выноса, сложенного мелкогалечным аллюво-пролювием р. Каинды и перекрытую покровными лессовидными суглинками мощностью ~ 1 м (см.рис 3.1.1.18) и T1 высотой 5 м, также сложенная аллюво-пролювием p. Каинды, мелкогалечным НО лишенная покрова лессовидных суглинков (см.рис 3.1.1.19).

Как видно на рисунке 3.17 разрыв смещает террасу Т2, но, по-видимому, не затрагивает террасу Т1, которая прослеживается вниз по течению реки. Примерно в 50 м севернее дома на поверхности этой террасы виден небольшой уступ высотой около 1 м (см.рис 3.1.1.17. между поверхностями Т1 и Т1а), но, судя по ориентировке этого уступа, он отражает, скорее, постепенное врезание долины, нежели смещение по разрыву. Поскольку на этом участке находится обрабатываемое поле, вскрыть этот уступ траншеей мы не смогли.

Однако, при более детальном анализе рельефа этого участка стало очевидно, что поверхность Т2 смещена дважды (см.рис 3.1.1.17). Разрыв, проходящий по подножию уступа и отмеченный на рисунке 3.1.1.17. сплошными красными стрелочками, смещает ее на 2 м по вертикали (см.рис 3.1.1.4). Но в 200 м к западу от борта долины р. Каинды от основного уступа ответствляется дополнительный — северный, обозначенный на рисунке 3.1.1.17. пунктирными стрелочками и разделяющий поверхности Т2а и Т2б. При этом поверхность террасы Т2а пересекает линию этого уступа без каких-либо признаков смещения и прослеживается вниз по долине.

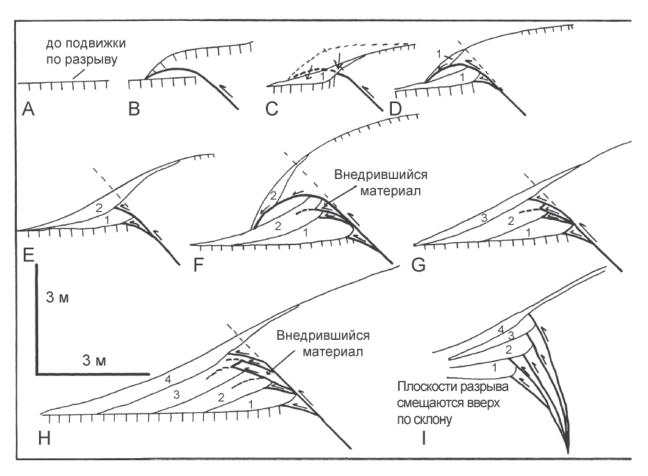


Рисунок 3.1.1.15 - Идеализированная последовательность стадий развития взброса, падающего под углом 45°. Из книги "Палеосейсмология" (2009, русский перевод - 2011)



Рисунок 3.1.1.16 - Пересечение Центрально-Нарынского разлома с долиной р. Каинды Подножие приразломного уступа отмечено красными стрелочками. Разрыв смещает террасу T2, на которую поднимается дорога, но не затрагивает террасу

T1, на котрой построен дом. Оконтурен участок, показанный на рисунке 3.1.1.12. - 3.1.1.17.

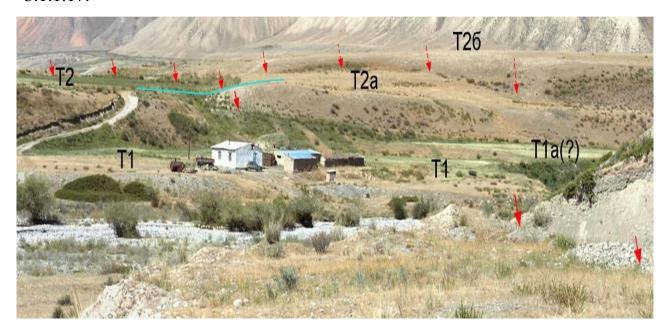


Рисунок 3.1.1.17 - Пересечение Центрально-Нарынского разлома с долиной р. Каинды (деталь) Сплошные красные стрелки — подножие основного уступа. Пунктирные стрелки — подножие северного (ответвляющегося) уступа. Голубая линия — профиль 4 (см.рис 3.1.1.4). Север — справа.

Это означает, что первая подвижка на этом участке произошла по северному разрыву. Далее в его поднятом крыле, в результате врезание долины в поверхность Т2б сформировалась терраса, продолжающая поверхность Т2 (что потребовало определенного времени), а затем произошла подвижка по южному разрыву, которая сместила ее еще на 2 м по вертикали, вследствие чего в поднятом крыле этого разрыва образовалась поверхность Т2а. Так как эта поверхность продолжается вниз по долине, движений по северному разрыву в это время уже не происходило.

Сопоставляя эти две ветви разрывного нарушения со сместителями, вскрытыми в траншее, пройденной примерно в 500 м восточнее, можно полагать, что и там движения по южной (нижней) плоскости произошли позже, чем по северной (верхней) плоскости. В пользу этого предположения говорит и то, что амплитуда смещения по северному разрыву в обоих случаях существенно больше, чем по южному.

Как уже отмечено выше, судя по постоянству мощности лессовидных суглинков на приразломном уступе, наблюдаемые подвижки произошли после их накопления.

Возраст лессовидных суглинков определен радиоуглеродным методом с применением технологии AMS по раковинам, отобранным в суглинках на ПК +1 и +2,5 (обр. 1) и на ПК +11 (обр. 2) и методом оптически стимулированной люминисценции (OSL).

Калиброванные возраста по ¹⁴С с вероятностью 95.4% составляют, соответственно, 8461-8252 года и 7076-6776 лет до н.э. т.е. относятся к нижнему голоцену. Соответственно, все наблюдаемые и предполагаемые подвижки по разрывам, сместившие эту пачку, моложе.

Возраст лессовидных суглинков, определенный методом OSL, составляет от 11.9 ± 0.8 до 1.7 ± 0.1 тысяч лет (Таб. 3.41). При этом пробы, отобранные вблизи подошвы лессовидных суглинков (OSL-3, 5, 6), дали возраст от 11.9 ± 0.8 до 8.3 ± 0.4 тысяч лет. Проба OSL-8, отобранная из песчаной линзы в подстилающих пролювиальных отложениях, древнее и имеет возраст 14.2 ± 1.6 тыс. лет. Проба OSL-8, отобранная примерно в 1 м выше подощвы лессовидных суглинков, имеет возраст в 4.3 ± 0.2 тысячи лет. Судя по состоянию разреза в месте отбора (плотные, светло-желто-серые суглинки, с очень редкими мелкими галечками), эта проба была отобрана из ненарушенной толщи и ее возраст близок к верхней границе периода накопления пачки лессовидных суглинков. Соответственно, все подвижки, нарущающие эту толщу, должны быть моложе. Наиболее молодой возраст (1.7 \pm 0.1 тысяч лет) показала проба OSL-8, отобранная из верхней части разреза лессовидных суглинков примерно на ПК +7. Здесь грунт отличается более рыхлым сложением, более темным цветом и более высоким содержанием мелких галек, что позволяет предположить, что суглинки здесь не залегают *in situ*, а находятся в смещенном состоянии, т.е. были перемещены сюда после образования уступа. Отметим, что четкой границы между "коренными" и "смещенными" лессовидными суглинками определить не удалось. Если указанные соображения верны, то подвижки по верхнему разрыву

происходили в интервале от 4.3 ± 0.2 до 1.7 ± 0.1 тысячи лет. Подвижка по нижнему, предположительно более молодому разрыву (см. выше) моложе 4.3 ± 0.2 тыс. лет, однако верхний предел ее возраста определить не удалось.

3.1.2. Участок «Университет Ага Хана»

Основные работы по изучению повторяемости сильных землетрясений на территории г.Нарын, проводившиеся в 2005 и 2011 годах, были сосредоточены непосредственно на западной окраине города, в пределах строительной площадки Университета Ага Хана. Целью данных исследований были выявление и трассирование отдельных разрывов, с тем, чтобы избежать размещения строящихся зданий на нарушениях. Для этого в двух точках - № 1 и № 2, были пройдены две траншеи вкрест простирания зоны Центрально-Нарынского разлома (см.рис 2.1.1.29)

В точке №1 траншея пройдена в два этапа: сначала глубиной 1, 5 м, а затем меньшей ширины также глубиной 1, 5 м. Общая глубина траншеи составила 3 м, длина - 20 м. Описание западной стенки показало, что имеются три основные стратиграфические единицы: 1 - плотные и крепкие глины нарынской свиты неогена, 2 - четвертичные (Q₃) аллювиальные галечники и валуны с песчаным заполнителем, и 3- светло-коричневые покровные суглинки, в которых содержатся линзы тонкозернистых песков.

Рисунок 3.1.2.1 - Фотография западной стенки траншеи.

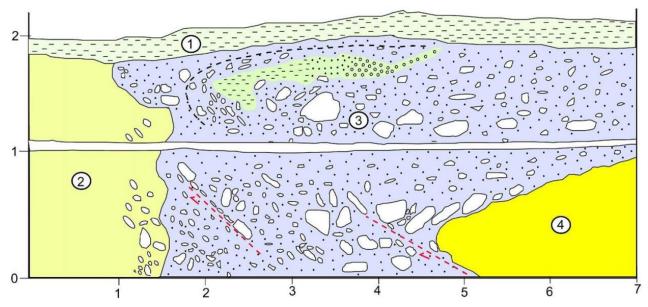


Рисунок 3.1.2.2 - Зарисовка западней стенки траншеи. Стратиграфические единицы: 1-остатки современного почвенного слоя, 2 – гомогенный четвертичный суглинок, 3- галечники и валуны с песчаным заполнителем. Средний диаметр галечника составляет 5-10 см, размер валунов 15-20 см. Имеются деформированные линзы тонкозернистого песка и супеси в верхней части слоя; 4 — коричневые плотные глины нарынской свиты неогена. Красным пунктиром показано положение разрывов.

Рисунок 3.1.2.3 - Места отбора образцов на термолюминисцентный анализ. Цифрами указан возраст в тысячах лет назад. Пунктирной линией показана деформация аллювиальных отложений. Красными точками показано положение разрывов.

Рядом с выше описанной траншеей, было зачищено обнажение ямы, ранее выкопанной Университетом, в стенке которой нам удалось увидеть строение разрыва и прилегающих к нему слоев (см.рис 3.1.2.3). Характерной особенностью слоев стало их подворачивание в верхней части разреза, (см.рис 3.1.2.4) Разлом представляет собой надвиг - глина неогена надвинуты на четвертичные галечники с песчаным заполнителем, с параметрами падающими к северу: простирание 115СВ и угол падения 25°. Примерно в трех метрах от острия разрывы галечники опрокинуты и длинная ось отложений протягивается вдоль простирания разлома.

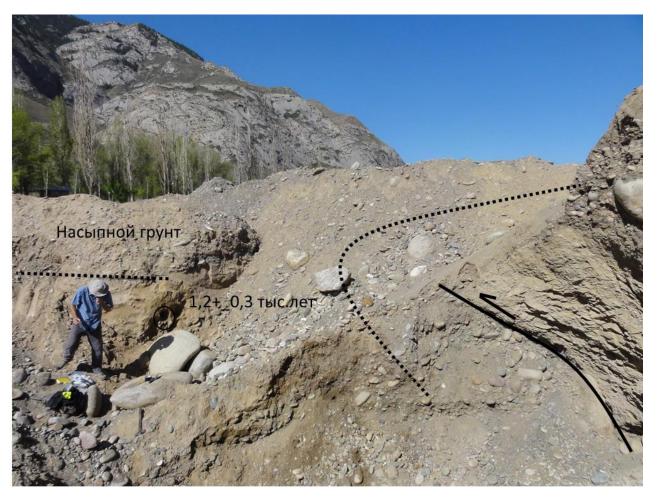


Рисунок 3.1.2.4 - траншеи, расположенной в 15 метрах восточнее от траншеи 1. Согласно нашим наблюдениям имеется по крайней мере одно событие, приведшее к деформации слоев. Возраст образцом, взятых для определения возраста термолюминисцентным методом показан на рисунке 3.1.2.8-3.1.2.11.

Траншея №2 была пройдена в восточной части площадки строящегося Университета в уступе высотой 6 м, который образован разрывом субширотного простирания (см.рис 3.1.2.6). Разрыв сместил поверхность молодой голоценовой террасы р.Нарын. В данной траншее хорошо видно, как отложения нарынской свиты (глины) надвинуты на аллювиальные галечники молодой голоценовой террасы (см.рис 3.1.2.7). Толща светло-коричневых илистых суглинков с прослоем тонкозернистых песков деформирована. Также деформирована толща валунно-галечных отложений с песчано-гравийным заполнителем, подстилающая суглинки. В зоне разрыва длинная ось валунов и крупного галечника вытянута вдоль сместителя разрыва. В верхней части разреза отчетливо выделяется коллювиальная толща, образовавшаяся в результате

обрушения и размыва уступа, появление которого связано со смещением пород по разрыву. На рисунке.1.2.8. показано место отбора образцов на термолюминистцентный анализ. К сожалению, возраст образца N-4 показал обратную стратиграфическую последовательность, что не может быть верным. Поэтому мы ориентировались на дату образца N-3, который ближе к возрасту голоценовой террасы.

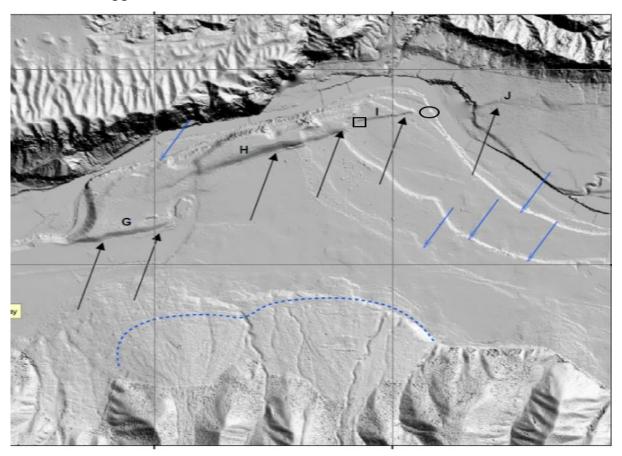


Рисунок 3.1.2.5 - Цифровая карта рельефа района расположения траншеи №2. Черными стрелками показано положение разлома. Синими стрелками показано положение уступов четвертичных террас р. Нарын. Прямоугольником показано положение траншеи №2.

Очередным местом исследования стала точка-разрез в уступе голоценовой террасы р. Нарын высотой 3 м (см.рис 3.1.2.6). Здесь в обнажении видна зона разрыва, который был вскрыт траншеей № 2. Разрыв представляет собой взброс, по которому красноцветные конгломераты киргизской свиты надвинуты на серые плотные глины нарынской свиты. В зоне контакта видна раздробленная зона, состоящая из обломков обеих свит (см.рис 3.1.2.7). Отличительной особенностью данного разреза является то, что валунно-галечная аллювиальная

толща, перекрывающая зону разлома, не затронута смещениями. Это может свидетельствовать о том, что после ее образования смещений по разлому не происходило. Образец № N 5 возрастом 2,46+_ 0,48 тыс. лет, который отобран в линзе песка, заключенной в покровной толще, подтверждает, что после этой даты смещений по разлому не было.

Рисунок 3.1.2.6 - Траншея № 2. Фотография восточной стенки траншеи. Север слева. Фото А.В. Миколайчука, 2006 г.

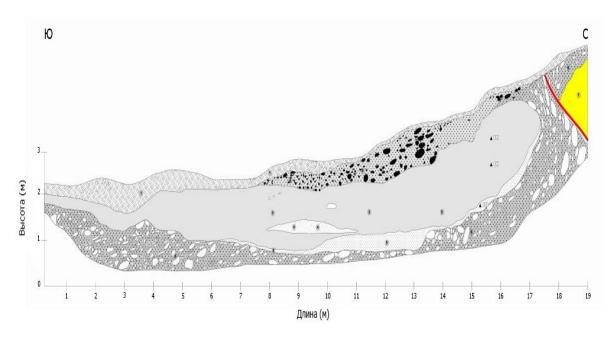


Рисунок 3.1.2.7 - Зарисовка восточной стенки траншеи № 2.

Легенда	
	Современный почвенно-растительный слой
70%	Палео-почва
	Илы
	Тонкие слои ила и мелкозернистых песков
	anggas. And an terran normalism and a series
	Мелкозернистые и среднезернистые аллювиальные песчаные отложения
354	Среднезернистые аллювиальные песчаные отложения
	Крупнозернистые аллювиальные песчаные отложения
	Гравелитовые пески
****	Гравий аллювиального происхождения
	Гравийно-щебневые отложения
	Аллювиальные мелко-галечные отложения с песчано-гравийной заполнитель
	Аллювиальные крупногалечные отложения с песчано-гравийной заполнитель
78	Аллювиальные валунно-галечные отложения с песчано-гравийной заполнител
2	Аллювиальные валунно-галечные отложения с супесными заполнителями
	Коллювиальные отложения
	Травертины
200	Конгломераты Киргизской свиты
	Остаточный грунт на суглинках нарынской свиты
	Лимонитизированные супесь
	Супеси
	Зона раздробленности киргизской и нарынской свит
_	Разлом
A DED	opposed Avm visit interest of an avms at the control of
• 000 (B)	Образец для радиоуглеродного анализа (C14) и его номер Номера слоев

Рисунок 3.1.2.8.

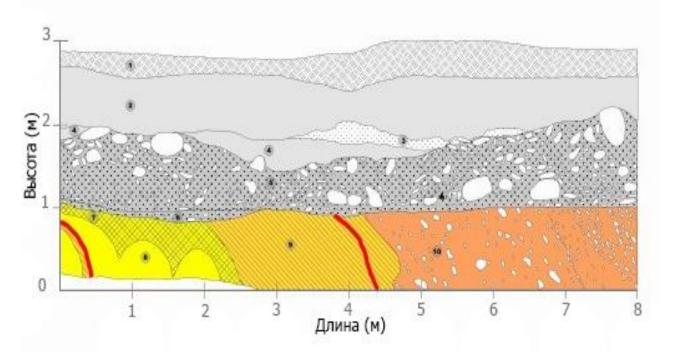


Рисунок 3.1.2.9.

Рисунок 3.1.2.10.

Рисунок 3.1.2.11.

Таким образом, результаты исследований, проведенных на площадке строящегося Университета Ага Хана, показывают, что последняя подвижка здесь произошла в интервале между 2,46+_0,48 и 5,4+_1,0 тыс. лет назад. Это

позволяет предположить, что «движения» и на этом участке, и восточнее - в районе Верхне-Нарынского каскада ГЭС, могли происходить одновременно.

3.2. Строение Нуратооского разлома, расположенного севернее Верхне-Нарынского каскада ГЭС.

В ходе полевого обследования дислокации Нуратоо через обратный уступ установлено, что высота уступа сильно меняется по простиранию. В ряде случаев это можно, по крайней мере, частично, объяснить наличием сдвиговой компоненты смещения по разрыву, пересекающему расчлененный рельеф (см.рис 3.2.1). Однако на других участках такая изменчивость высоты уступа явно обусловлена наличием нескольких последовательных подвижек по разрыву. Это видно, в частности, на участке, показанном на рисунке 3.2.2. Здесь разрыв пересекает сравнительно глубокую долину временного водотока с выраженной невысокой террасой на ее правом борту. Высота приразломного уступа на водоразделе существенно (примерно в 2 раза) больше, чем там, где он пересекает эту террасу, что позволяет говорить о наличии здесь следов, как минимум двух подвижек.

Восточнее приразломный уступ смещает нижнюю часть тела молодого обвала объемом несколько тысяч кубометров, сложенного глыбами светлых гранитов размером до 1 метра (см.рис 3.2.2. на переднем плане и см.рис 3.2.3). Нижняя часть обвального тела находится на поднятом крыле уступа. Если бы обрушение произошло после последней подвижки, тело обвала должно было сперва заполнить ложбину, и только затем распространиться далее вниз по склону. То, что обвальное тело находится и на опущенном и на поднятом крыльях разрыва с ярко выраженным "обратным" уступом, однозначно свидетельствует о том, что последняя подвижка произошла после образования обвала. При этом в пределах обвального тела высота уступа составляет примерно 4 м (см.рис 3.2.4), а вне его достигает 9 метров (см.рис 3.2.5), т.е. опять же примерно в 2 раза больше. Это свидетельствует о том, что смещения по разрыву на 4-5 метров на этом участке происходили, как минимум, дважды. На это указывает и наличие явного перелома в профиле склона приразломного уступа

на участке, где он образован двумя подвижками рисунок 3.2.5. Отметим, что обвал перекрыл обратный уступ оперяющего разрыва, находящегося выше по склону рисунок 3.2.3. Скорее всего, эти оперяющие разрывы образовались при предпоследней подвижке по основному разрыву и не активизировались при последнем событии.

Крупные глыбы гранитов встречаются на поднятом крыле приразломного уступа и восточнее, там, где его высота составляет 8-10 метров (см.рис 3.2.6, справа). Можно предположить, что это следы аналогичных, но более древних обвалов, произошедших до предпоследней подвижки по разрыву. В отличие от молодого обвала, показанного на рисунке 3.2.2, их тела уже неразличимы на склоне, выработанном в гранитном массиве. Тем не менее, очевидно, что возраст самого молодого обвала даст нам нижний предел возраста последней подвижки по разрыву, а возраст глыб из более древних обвалов – соответственно нижний предел возраста предпосдедней подвижки. Для этого в точках, отмеченных на (см.рис 2.3.2.) и (см.рис 2.3.5), были отобрано две пробы из гранитных глыб для определения возраста подвижек методом анализа космогенных изотопов (10 Ве) (см.рис 3.2.6)

Рисунок 3.2.1 - Изменение высоты приразломного уступа, частично в результате левостороннего сдвига

Резкое уменьшение высоты уступа в правой части панорамы с ~ 3 м практически до нуля может быть обусловлено существенной левосдвиговой компонентой смещений на этом участке.

Рисунок 3.2.2 - Участок дислокации Нуратоо с разновысокими уступами.

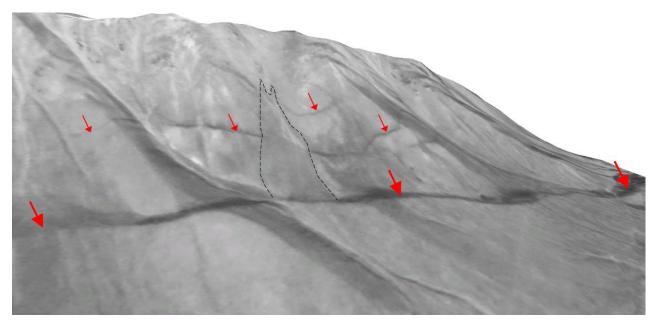


Рисунок 3.2.3 - Соотношение тела обвала с основным и оперяющими разрывами в западной части дислокации Нуратоо.

Трехмерная модель участка, показанного на рисунке 3.2.3. Тело обвала оконтурено пунктирной линией, основной разрыв обозначен большими стрелочками, оперяющие разрывы – маленькими стрелочками

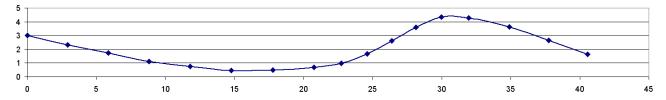


Рисунок 3.2.4 - Профиль 6 через уступ с одноактной подвижкой. Высота уступа ~4 м

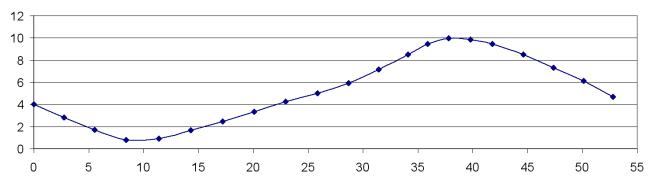


Рисунок 3.2.5 - Профиль 5 через уступ с кумулятивной подвижкой. Высота уступа ∼9 м

Рисунок 3.2.6 - Слева - образец 4, справа - образец 5.

Судя датировкам, последняя сформировавшая подвижка ПΟ, дислокацию Нуратоо, произошла не ранее, чем в 3454±986 лет тому назад (что соответствует диапазону между 2426 и 454 г.г. до н.э.), а предшествующая – в интевале между этой датой и 18680±5711 лет тому назад (после 22377 – 10955 г.г. до н.э). Можно предположить, что возраст обвала близок к возрасту последней (если обрушение подвижки допустить, произошло что непосредственно в момент землетрясения, а подвижка по разлому – буквально в течение нескольких секунд/минут после этого), однако для того, чтобы утверждать это уверенно, недостаточно данных.

Подвижки по этому же разлому в районе Верхне-Нарынского каскада ГЭС имели место, скорее всего, в интервале от 4.3 ± 0.2 до 1.7 ± 0.1 тыс. лет (2486 г. до н.э. -214 г. н.э.). При этом, судя по характеру деформаций в траншее за этот период времени произошло несколько подвижек по разлому на этом участке.

Сопоставление возрастов последних подвижек по изученным разломам приведено на рисунке 3.2.7. Как видно из этого сопоставления подвижки на всех трех участках могли произойти одновременно, но имеющихся данных недостаточно для однозначного доказательства такой одновременности.

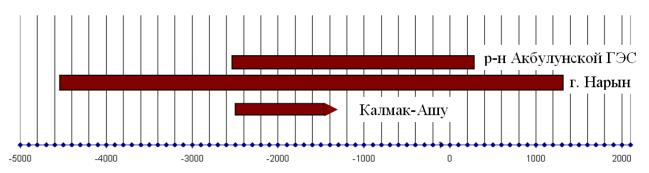


Рисунок 3.2.7 - Сопоставление возрастов последних подвижек по исследованным разломам

3.3. Оценка максимальной магнитуды возможных сильных землетрясений.

Общая протяженность прослеживаемого активного Центрально-Нарынского разлома, составляет примерно 60 км (см.рис 1.1). Несколько большую протяженность — около 80 км — имеет ступень в рельефе, приуроченная к разлому, отделяющему восточную часть Алабуга-Нарынской впадины от примыкающих к ней с севера хребтов Джетимтоо и Нуратоо. Представляется, однако, что единовременное вспарывание охватывало эти разломы не на всей их протяженности. Особенно ярко это проявлено к которому приурочена дислокация Нуратоо, где обновленный участок разлома прослеживается не более чем на 32 км (см.рис 2.3.1).

Дополнительная информация, позволяющая судить о протяженности очаговых зон палеозеземлетрясений, получена в ходе дешифрирования космических снимков КФА-3000 с разрешением ~ 3-5 м. Установлено, что, наряду с яркими проявлениями молодой разрывной тектоники, в восточной части Алабуга-Нарынской впадины широко развиты оползни в неогенчетвертичных отложениях, причем именно в той части впадины, вдоль северного ограничения которой прослеживаются молодые разрывы дислокации Нуратоо (см.рис 2.3.1). Это особенно отчетливо видно на карте оползневой пораженности восточной части Нарынской впадины (см.рис 3.3.1). Для ее составления вся территория, в пределах которой установлено массовое развитие склоновых смещений, преимущественно в неоген-четвертичных отложениях, была разбита на квадраты 2×2 км, для которых рассчитывалась доля площади (в процентах), занятой оползнями. Анализ проводился в скользящем окне с шагом в 1 км по широте И долготе. Полученное значение оползневой пораженности пРисунокваивалось точке в центре каждого квадрата и по ним в программе Global Mapper строились изолинии (см.рис 3.3.1).

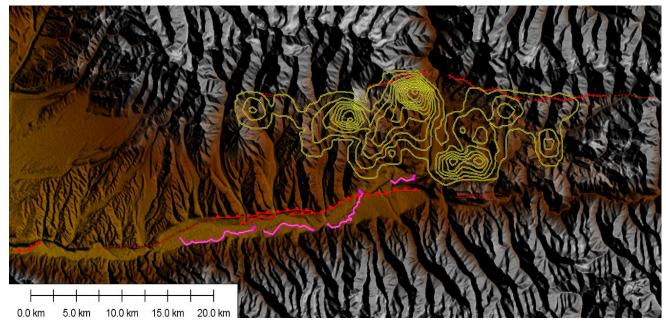


Рисунок 3.3.1 - Оползневая пораженость территории к северу от Центрально-Нарынского разлома. Нанесены изолинии 1%, 5%, 10% и далее с шагом 5%. Подложка – 3" ЦМР SRTM. Показны достоверно выделяемые молодые разрывы в зоне Центрально-Нарынского разлома и разрывы дислокации Нуратоо с обозначением их кинематики и молодые разрывы, выделяемые предположительно. Показаны также створы плотин и трассы дериваций ГЭС Верхне-Нарынского каскада.

На рисунке 3.3.1. отчетливо видно, что эта область в целом образует полуэллипс, длинная ось которого, протяженностью 38 км, приурочена к разрыву дислокации Нуратоо. Ее восточное ограничение совпадает с восточной границей области развития кайнозойского осадочного чехла межгорной впадины (см.рис 3.3.2). Однако западное (юго-западное) окончание этой области не имеет столь отчетливого "геологического" ограничения, хотя наиболее нарушенная оползнями территория совпадает с областью развития отложений киргизской и нижней части нарынской серий. За пределами оконтуренной области, несмотря на то, что большая часть территории Алабуга-Нарынской впадины сложена аналогичными малопрочными неогеновыми песчаниками, когломератами и алевролитами и характеризуется сопоставимй эрозионной расчеленностью с примерно одинаковой глубиной долин и крутизной их склонов (см.рис 3.3.1, 3.3.2), ничего подобного не наблюдается. На наш взгляд, явная приуроченность этой области к разрывам дислокации Нуратоо не случайна и обусловлена единой

причиной образования и разрывов и оползней — сильным доисторическим землетрясением.

В то же время, как было отмечено выше, при описании разрывов дислокации Нуратоо, они с большой вероятностью представляют собой не самостоятельную сейсмогенерурующую структуру, а являются вторичными по отношению к основному – Центрально-Нарынскому разлому. Мы рассматриваем область массового развития и молодых разрывов в зонах обеих рассматриваемых разломов и оползней, как очаговую область землетрясений, периодически повторяющихся на этом участке. Ее протяженность составляет примерно 45 км. Эту величину мы и учитываем при оценке сейсмического потенциала и Центрально-Нарынского разлома и разлома, ограничивающего впадину с севера ("разлом Нуратоо"), отдавая себе отчет, что она превосходит протяженность уверенно выделяемых молодых дислокаций в каждой из этих зон.

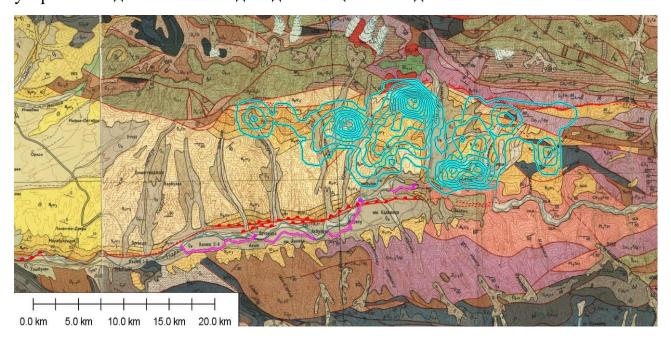


Рисунок 3.3.2 - Сопоставление оползневой поражености территории к северу от Центрально-Нарынского разлома с ее геологическим строением. Геология приведена по картам 1:200 000. Оползневая пораженность аналогична показанной (см.рис 3.3.21)

Разрывы такой протяженности описаны при землетрясениях от 6.5 до 7.9. Среднее значение M_s =7.2 (см.рис 3.3.3).

Согласно регрессионным зависимостям между длиной поверхностного (SRL), либо очагового (RLD) разрыва из работы (Wells, Coppersmith, 1994) при их протяженности, равной 45 км, получаем несколько меньшие значения:

$$M_w = 5.0 + 1.22 \times \log(SRL) = 7.02$$

$$M_w$$
=4.49+1.49×log(RLD)=6.95

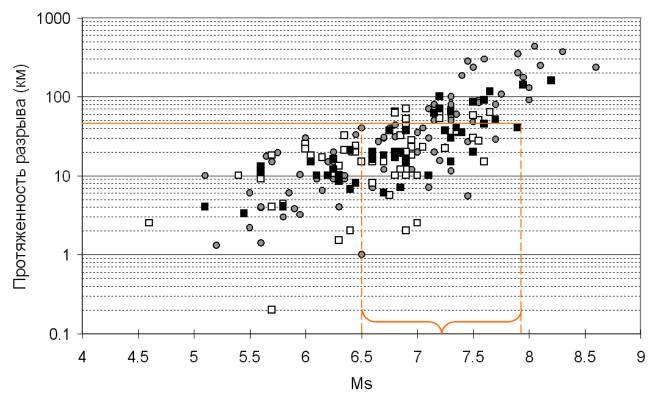


Рисунок 3.3.3 - Соотношение между протяженностью сейсмогенных разрывов и магнитудой землетрясений (Стром, 1998)

Серые кружки – разрывы с преимущественно сдвиговой подвижкой, белые квадлатики – с преимущественно сбросовой, черные – с преимущественно взбросовой подвижкой. Оранжевыми линиями выделен диапазон магнитуд, соответствующий протяженности разрыва L=45 км и отмечено среднее значение примерно равное 7.2. Голубыми линиями – аналогичный диапазон для L= 60 км (среднее значение примерно 7.3)

Второй способ оценки магнитуды палеоземлетрясений — использование соотношений между магнитудой и максимальной одноактной подвижкой по разрыву. Можно использовать и средневзвешенную подвижку, но для ее корректной оценки необходимо знать величину смещения в достаточно большом

количестве точек вдоль простирания разрывов, что, как отмечено выше, возможно только по результатам подробных, очень трудоемких и дорогостоящих исследований. Как отмечено выше, установление величины максимальной одноактной подвижки осложняется тем, что проходка исследовательских траншей через приразломный уступ там, где его высота максимальна, сопряжена с большими сложностями по обеспечению техники безопасности. Траншея через уступ Центрально-Нарынского разлома была пройдена там, где его высота составляла от 6 до 8 м (см.рис 3.1.1.3), при том что максимальная высота уступа, нарушающего ту же поверхность слившихся конусов выноса левобережных притоков Нарына, достигает 16 м (см.рис 3.1.1.5). Учитывая, что Центрально-Нарынский разлом представляетс собой надвиг, точный наклон плоскости сместителя которого известен только в приповерхностной части, там, где плоскости разрывов вскрыты трнашеей, использование величины подвижки по направлению смещения не очень надежно. Во-первых, для надвигов зачастую характерно выполаживание плоскости сместителя в приповерхностной части разреза, вследствие чего величина надвигания не соответствует истинному перемещению блоков земной коры, разделяемых такими разрывами. Во-вторых, величина подвижки по направлению смещения определена только в траншее. На участке, где смещения были близки к масивальным, углы падения сместителей нам не известны. Наконец, в-третьих, надо учитывать, что при выведении регрессионных соотношений между магнитудой и величиной подвижки, при определении смещения по направлению вектора смещения чаще учитывались вертикальная и сдвиговая компоненты, надежно фиксируемые при полевом обследовании последствий землетрясений. Вторая горизонтальная компонента сжатие, характерное для надвигов, определялась намного реже (Стром, 1998). Поэтому для оценки магнитуд землетрясений, связанных с подвижками по Центрально-Нарынскому разлому, предпочтительно использовать вертикальную компоненту смещений.

Как отмечено выше, есть основания ожидать, что максимальная измеренная высота уступа Центрально-Нарынского разлома (16 м) накопилась в результате нескольких (4-5) последовательных подвижек по нему, при максимальном единовременном вертикальном смещении до 6 метров. Вертикальная компонента смещений по сдвиго-сбросу дислокации Нуратоо также составляет 4-5 м. Как показано на рисунке 3.3.4. такие смещения характерны для разрывов землетрясений в достаточно широких диапазонах магнитуд, средние значения которых составляют примерно 7.5 для взбросов и 7.2 для сбросов.

Хотя, как отмечено выше, нельзя полностью исключить возможность того, что дислокацийй в зоне Центрально-Нарынского разлома на изученном нами участке и к западу от г. Нарын произошли одновременно, все же практически полное отсутствие проявлений оползневых процессов в неогенчетвертичных отложениях в районе г. Нарын указывает на то, что его западная часть развивалась автономно и независимо от восточной. Отметим, впрочем, что даже если протяженность очаговой зоны достигала ~60 км, это практически не влияет на оценку могнитуды землетрясения, с которым может быть связан разрыв такой протяженности (см.рис 3.3.3).

Таким образом, анализ всей свокупности палеосейсмологических данных позволяет считать, что в восточной части возможны землетрясения с магнитудами в диапазоне 7.0 - 7.5. Оценки магнитуд палеоземлетрясений по длине очаговой области дают несколько меньшие значения – примерно от 7.0 до 7.2; оценки по величине подвижки – несколько большие – примерно 7.5. С учетом неопределенностей, в качестве расчетной величины при определении параметров расчетных сейсмических воздействий рекоментуется принять 7.3. Учитывая среднее значение магнитуды равное сохраняющуяся неоднозначность в оценке взаимосвязей между движениями по разрывам в зоне Центрально-Нарынского разлома и разлома Нуратоо, в дальнейшем, при оценке сейсмических воздействий, параметров они рассматриваются как самостоятельные сейсмогенерирующие структуры с \mathbf{M}_{max} =7.3.

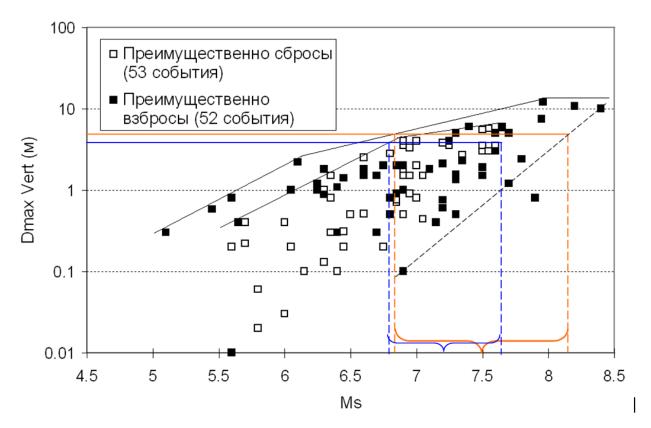


Рисунок 3.3.4 - Соотношение между магнитдами землетрямений и максимальными вертикальными смещениями по разрывам. Коричневыми линиями показан итервал магнитуд землетрясений, сопровождавшихся взбросами с $D_{max} = 6$ м, Синими линиями — то же для сбросов с $D_{max} = 5$ м.

качестве возможного аналога можно принять Эль-Аснамское землетрясение 1980 г. в Алжире. Его магнитуда составляла 7.4±0.3, протяженность разрыва, образовавшегося при этом землетрясении, разными авторами оценивается от 29 до 42 км (King G.C.P. et al, 1981, Madariaga R. 1984, Ouyed M., et al., 1981, Ruegg et al., 1982,. Yelding G. et al., 1981), максимальная полная амплитуда смещения достигала 6,5 м (возможно, до 8 м), максимальное вертикальное смещение – 6 м, (с учетом значительных изгибных деформаций средние (средневзвешенные) висячего крыла), значения подвижек, соответственно 1.79 и 1.88 м (Стром, 1998, Стром, Никонов, 1999). Параметры образовавшегося (точнее, активизировавшегося) разрыва, при ЭТОМ землетрясении, близки к таковым у Центрально-Нарынского разлома, а его магнитуда близка к рекомендованному расчетному значению.

3.4. Оценка интенсивности фоновых сейсмических воздействий

Оценка фоновой интенсивности сейсмических воздействий сделана для 4 зон ВОЗ, рассмотренных в двух близких, связанных с Центрально-Нарынским разломом и разломом, ограничивающим восточную часть впадины с севера (зона Нуратоо) и двух удаленных — Предтерскейской и Кемино-Чиликской. Основные параметры землетрясений, ожидаемых этих зонах ВОЗ, приведены в таблице

Таблица 3.4.1. - Параметры основных зон BO3, воздействия из которых определяют сейсмическую опасность Верхне-Нарынского каскада ГЭС.

Зона ВОЗ	Δ (км)	h (км)	\mathbf{M}_{max}	Механизм
				очага
Центрально-	1	15	7.3	Взброс
Нарынская				
Нуратоо	10	15	7.3	Взброс
Предтерскейская	70	15	7.5	Взброс
Кемино-Чиликская	150	20	8.2	Взброс

 Δ (км) – кратчайшее расстояние от гидроузлов до выхода сейсмогенерирующего разлома на поверхность, h (км) – принятая расчетная глубина гипоцентра землетрясения, точнее – центра области излучаения.

Фоновая интенсивность сейсмических воздействий при землетрясениях с \mathbf{M}_{max} в Предтерскейской и Кемино-Чиликской зонах ВОЗ, удаленных от участка проектируемых гидроузлов на расстояние, сопоставимое или превышающее линейные размеры их очагов, может быть рассчитана по уравнению макросейсмического поля (Новый каталог, 1977):

$$I_{\Delta}=1.5\times M - 3.5\times \log(\Delta^2+h^2)^{0.5}+3.0$$

При этом Δ приравнивается к эпицентральному расстоянию, что, в данном случае, приемлемо, с учетом точности определения положения эпицентров и расстояния до разломов, а значения коэффициентов (1.5, 3.5, 3.0) соотвествуют круговым изосейстам.

Поскольку при высокомагнитудных коровых землетрясениях изосейсты высших баллов обычно вытянуты вдоль сейсмогенерирующих структур, а указанные зоны ВОЗ простираются в субширотном направлении и расположены к северу от участка Верхне-Нарынского каскада ГЭС, полученные значения интенсивности (Табл. 3.4.2), являются завышенными и могут рассматриваться, как весьма консервативные.

При оценке фоновой интенсивности воздействий при землетрясениях с очагами в зонах ВОЗ, проходящих вблизи площадки строительства на расстояниях, существенно меньших линейных размеров этих очагов, использование вышеприведенного уравнения вообще не корректно, так как в этих случаях площадка оказывается в пределах "ближней зоны" или даже в пределах "очаговой зоны" (Аптикаев, 2012). Согласно Ф.Ф. Аптикаеву (2012), ближняя зона — это область, в которой затухание ускорений с расстоянием R слабее сферического расхождения, а очаговая зона — область вблизи сейсмогенерирующего разлома, где отсутствует затухание сейсмических волн или даже наблюдается некоторое увеличение их амплитуды с расстоянием. На рисунке 3.4.1. показаны графики изменения сейсмической интенсивности с расстоянием для различных магнитуд, с учетом вышеуказанных особенностей.

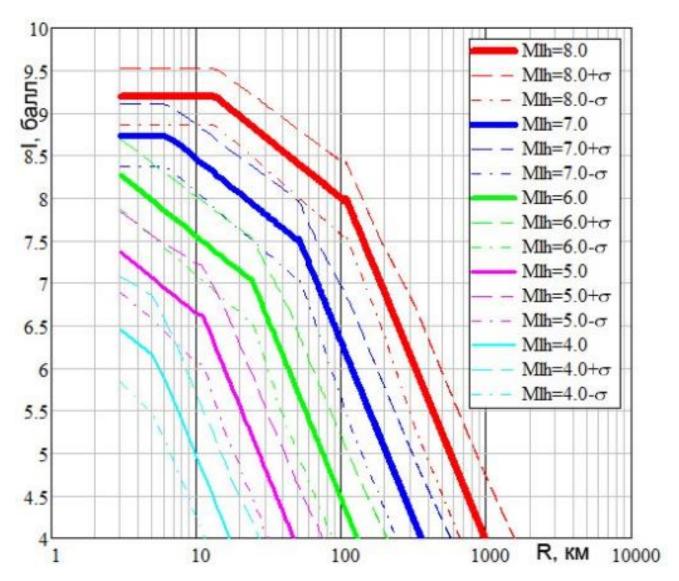
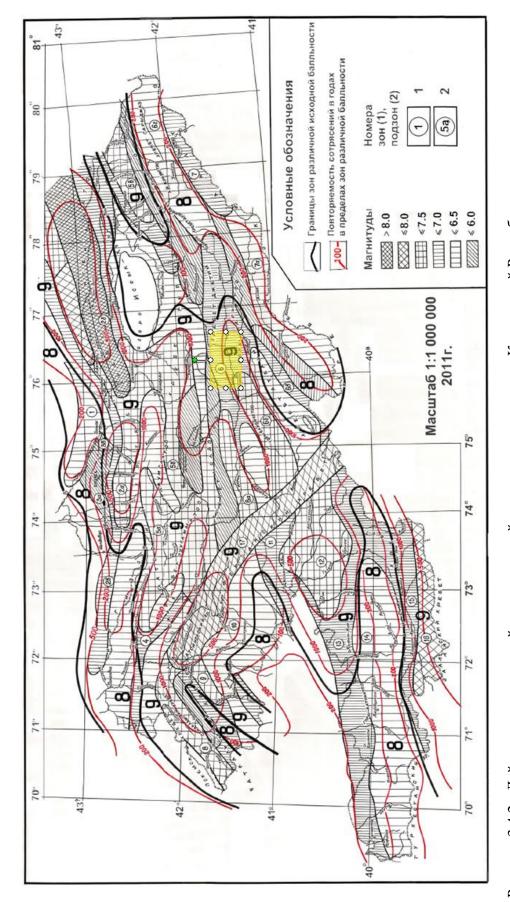



Рисунок 3.4.1 - Зависимость сейсмической интенсивности от расстояния до источника и магнитуды M_{LH} для землетрясений со взбросовой кинематикой подвижки в очаге. Графики построены С.А. Перетокиным (НП ЭЦ РОПР) по данным Ф.Ф. Аптикаева (ИФЗ РАН)

Согласно этим соотношениям, фоновая интенсивность сейсмических воздействий при землетрясениях с \mathbf{M}_{max} =7.3 в Центрально-Нарынской зоне ВОЗ и в зоне ВОЗ, совпадающей с дислокаций Нуратоо, выраженная в целочисленных значениях, составит 9 баллов (см. Табл. 3.4.2) что согласуется с оценками по действующей карте сейсмического районирования территории Кыргызской Республики (см.рис 3.4.2).

Желтым прямоугольником обозначен район расположения гидроузлов Верхнее-Нарынского каскада ГЭС Рисунок 3.4.2 - Действующая карта сейсмического районирования территории Кыргызской Республики

Таблица 3.4.2. - Рекомендуемая фоновая интенсивность сотрясений при землетрясениях с \mathbf{M}_{max} в рассматриваемых зонах ВОЗ.

	I_{Δ} (балл)
Зона ВОЗ	Рассчитанное / округленное целочисленное
	значение
Центрально-	/ 9
Нарынская	
Нуратоо	/9
Предтерскейская	7.76 / 8 (завышенная оценка)
Кемино-Чиликская	7.67 / 8 (завышенная оценка)

Таким образом, оценка сейсмического потенциала зон ВОЗ, ближайших к сооружениям Верхне-Нарынского каскада, и параметров сейсмических воздействий показывает, что анализ всей свокупности палеосейсмологических данных позволяет считать, что в восточной части Алабуга-Нарынской впадины возможны землетрясения с магнитудами в диапазоне 7.0 — 7.5. Фоновая интенсивность сейсмических воздействий на площадках основных сооружений этих гидроузлов составляет 9 баллов.

Последние подвижки по ближайшему к сооружениям Центрально-Нарынскому разлому произошли в период 2486 г. до н.э. — 214 г. н.э. Повторяемость подвижек по имеющимся данным определить не удалось, однако можно полагать, что она составляет несколько тысяч лет, так как за указанный период произошло, как минимум, две подвижки.

3.5. Определение ширины зон влияния Центрально-Нарынского разлома

Международный опыт определения ширины буферных зон разломов.

Определение соотношений между будущими смещениями и шириной зоны вдоль разлома, запретной для строительства (также называемой буферным расстоянием), зависит от типа разлома. В Новой Зеландии, где активные разломы включают сбросы, взбросы и сдвиги, буферное расстояние от активного разлома по умолчанию составляет 20 м (Палеосейсмология, 2011). Здания можно располагать ближе этого расстояния, если только детальными исследованиями участка будет доказано, что вторичные деформации распространяются на расстояние менее 20 м от линии разлома.

Мак-Калпин (Палеосейсмология, 2011) собрал данные документации 40 траншей, пройденных через активные сбросы, и провел статистическое обобщение следующих деформационных структур, выявленных в траншеях: положение главного разрыва, под приразломным уступом, угол падения плоскости главного разрыва, число вторичных разрывов в лежачем крыле, ширина зоны развития вторичных разрывов в лежачем крыле, число вторичных разрывов в висячем крыле, ширина зоны развития вторичных разрывов в висячем крыле, отношение смещения по антитетическому разрыву (если таковой имеется) к смещению по главному разрыву и ширина зоны запрокидывания (образование обратных складок волочения) в висячем крыле. На основании средних значений этих параметров он рекомендовал минимальную ширину буферной зоны в 40 футов (12.2 м) от главного разрыва на поднятом блоке и 50 футов (15.2 м) на опущенном блоке.

Минимальная ширина буферной зоны основана на типе планируемого сооружения (см.табл 3.5.1). Ширина должна рассчитываться с помощью представленных ниже формул и затем сравниваться с минимальным значением, указанным в (см. табл 3.4.1).

Таблица. 3.5.1. - Рекомендации по определению максимальной ширины буферной зоны и фактор ответственности (U) для классификации зданий (см. табл. 3.5.1). Международного строительного Кодекса (IBC) (Международный союз строительных норм и правил, 2000).

Класс	Классификации зданий	Ответ	Коэффициент	Min ширина
IBC		ствен	ответственнос	буферной зоны
		ность	ти U	(фут)
A	Ассамблея	2	2	25
В	Бизнес	2	2	20
Е	Образование	1	3	50
F	Заводы и фабрики	2	2	20
Н	Повышенной Опасности	1	3	50
I	Институциональная	1	3	50
M	Товарная	2	2	20
R	Жилая	2	2	20
R3	Жилая, включающая	3	1.5	15
	индивидуальные дома			
S	Хранения	-	1	0
U	Коммунальные и Прочие	-	1	0

Для примера приведем значения коэффициента ответственности, предлагаемые для строительных норм, и правил, предлагаемых для СНГ Таблица 3.5.2. (Фонды Института сейсмологии НАН КР.)

Таблица 3.5.2.

Значения коэффицента ответственности K_2			
No	ХарактеРисуноктика сооружений	Значения К2	
1	Особо ответственные и уникальные сооружения	1,5	

2	- Сооружения с одновременным пребыванием большого	1,40
	числа людей (крупные вогзалы, аэропорты, театры,	
	концертные залы с числом мест более 1000 чел, крытые	
	рынки и стадионы;	
	- Здания и сооружения, эксплуатация которых	
	необходима при землетрясении или при ликвидации его	
	последствий (системы энерго-и водоснабжения, системы	
	пожаротушения, телефонной и телеграфной связи,	
	банков государственных и местных административных	
	органов и т.п.)	
3	Здания больниц, школ, детских садов, высших учебных	1,30
	заведений.	
4	Жилые, обшественные и производственные здания, не	1
	указанные в п. 1-3.	
5	Здания и сооружения, разрушения которых не связано с	0-0,6
	гибелью людей, порчей ценного оборудования и не	По
	вызывает прекрашания непрерывных технологических	согласованию
	процессов или загрязнения сооружения окружающей	с заказчиком
	среды.	
		L

Примечание. Объекты по п. 1. утверждаются директивными органами страны [50].

Как показана на (см. табл. 3.5.1). Международная Классификация зданий согласно Международному Строительному кодексу.

- Ассамблея (Группа A) места, используемые людьми для развлечений, поклонений, еды или питья. Примеры: церкви, рестораны (с 50 или более возможных пассажиров), театры и стадионы.
- Бизнес (Группа В) места, где предоставляются услуги (не путать с товарами, ниже). Примеры: банки, страховые агентства, правительственные здания (в том числе полицейские и пожарные станции), и врачебные кабинеты.
- Образование (Группа Е) школы и центры дневного ухода, до 12-го класса.

- Заводы и фабрики (Группа F) места, где производятся или ремонтируются товары (не включая "повышенной опасности" (см. ниже)). Примеры: заводы и химчистки.
- Повышенной Опасности (Группа Н) места, связанные с производством или хранением быстро воспламеняющихся или токсичных материалов. Включает места для транспортировка взрывчатых веществ и/или высокотоксичных материалов (таких, как фейерверки, перекись водорода и цианиды).
- Институциональная (Группа I) места, где люди физически не способны выйти без посторонней помощи. Примеры: больницы, домах для престарелых и тюрьмы. В некоторы
- х странах, Группа I обозначается как Промышленная
- Товарная (Группа М) места, где выставляется и продается продукция. Примеры: продуктовые магазины, универмаги, и автозаправочные станций.
- Жилая (Группа R) места, где предоставляются помещения для ночлега (за исключением Организационной). Примеры: дома, жилые дома, гостиницы, и трехместные номера.
- Хранение (Группа S) места, где хранятся различные элементы (не считаяповышенной Опасности). Примеры: склады и гаражи.
- Коммунальные и Прочие (Группа U) другие. Примеры: водонапорные башни, амбары, башни.

Минимальные буферные расстояния определяются как для висячего, так и лежачего блоков. Ширина буферной зоны на опущенном блоке рассчитывается в соответствии со следующей формулой:

$$S = U (2D + F/tane),$$

 Γ де S – расстояние от линии разрыва, в пределах которого строительство зданий, предназначенных для нахождения в них людей, запрещено; U -

коэффициент ответственности, основанный на предполагаемом расчетном числе людей, находящихся в здании (см.рис 3.5.1). D — ожидаемая единовременная подвижка по разрыву (предположительно равна вертикальному смещению, измеренному для каждого прошлого события); F — глубина заложения фундамента здания; θ — угол падения плоскости разрыва (градусы). Все значения даны в футах. Переменные, использованные в уравнении, графически представлены на

Для расчетов ширины буферной зоны на поднятом блоке угол падения плоскости разрыва и глубина заложения фундамента не имеют значения. Поэтому ширина отступа от линии разрыва рассчитывается по формуле:

$$S = U * 2D$$

Расстояние от линии разрыва измеряется для части здания, находящейся ближе всего к нему, вне зависимости от того, относится это к фундаменту или к надземной части. Минимальные буферные расстояния определяются как для висячего, так и для лежачего крыльев. Используемые переменные показаны на Рисунок 3.5.1.

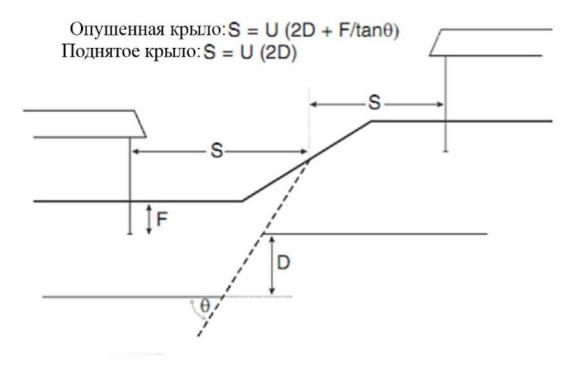


Рисунок 3.5.1 - Поднятый блок (Лежачее крыло разлома)

Буферное расстояние для жилых зданий и офисов (U = 2) с фундаментом глубиной 2.5 м (F=2.5) будет, таким образом, зависеть от палеосейсмологических параметров, таких как угол падения плоскости разрыва вблизи поверхности, принимаемый равным 70° (θ = 70; tan θ = 2.75), и среднего смещения около 2.0 м (хотя там, где развиты грабены, среднее смещение по главному разрыву может быть почти в два раза больше). Согласно уравнениям, эти исходные значения дадут расстояния отступа от главного разрыва, равные 9.8 м на опущенном блоке и 8 м – на поднятом блоке. Отметим, что эти расстояния составляют только 65% от расстояний, рекомендуемых в (Палеосейсмология, 2011) и менее чем половину 20-метрового расстояния, по умолчанию используемого в Новой Зеландии. Меньшие величины отступа от линии разрыва стали возможны потому, что они «подстроены» под специфическую форму и кинематику поверхностных разрывов и, к тому же, в определенной степени снижены за счет использования более низкого коэффициента критичности. Если мы повторим расчеты для сооружений более высокой ответственности (U = 3), то получим увеличение отступа на 50% до 14.7 м (на висячем крыле) и до 12 м (на лежачем Мак-Калпиным крыле), ближе значениям, рекомендуемым (Палеосейсмология, 2011).

3.5.1. Данные по определению ширины зоны влияния Центрально-Нарынского разлома

В 1976 году в пределах территории г. Нарын было проведено сейсмическое микрорайонирование на рисунке 3.5.1.1. Зона Центрально-Нарынского разлома была нанесена по инженерно-геологическим данным и зона его влияния оценивалась равной 100-125 метров. При этом ширина зоны влияния принималась одинаковой как пределах поднятого, так в пределах опущенного крыльев. Как показано выше на рисунке 3.5.1. такой подход не является верным, поскольку в пределах поднятого крыла зона поверхностных деформаций гораздо шире.

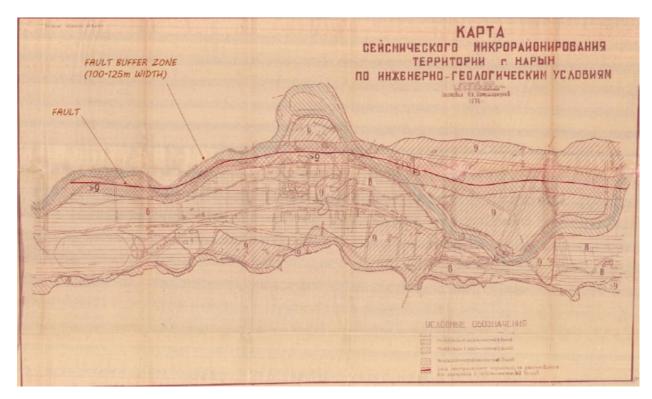


Рисунок 3.5.1.1 - Карта сейсмического микрорайонирования территории г. Нарын по инженерно-геологическим условиям (1976). (Макаров В.И.1977).

Указанные выше расчеты (см.рис 3.5.1.2) применимы для сбросов. Для надвигов, которые развиты в пределах изученной нами территории, нами приняты следующие положения. При изучении зоны Центрально-Нарынского активного разлома, пересекающего строительную площадку Международного Университета Ага Хана в зоне разлома были выделены три различных по своему значению зоны (см.рис 3.5.1.2).

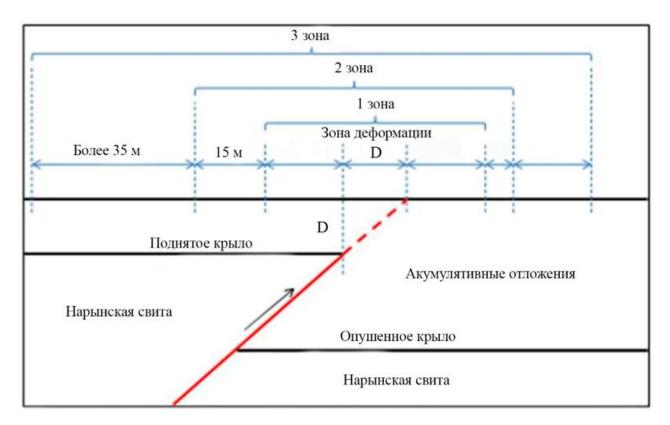


Рисунок 3.5.1.2 - Зона влияния Центрально-Нарынского разлома в пределах территории Университета Ага-Хана по данным компании ARUP (Лондон, Англия). Фонды Института сейсмологии НАН КР. .

Зона 1 — зона выхода разрыва на поверхность D, которая определяется глубиной до кровли коренной породе и шириной зоны нарушений, связанных непосредственно с основным разрывом разлома. Ширина буферной зоны определяется в зависимости от угла падения разлома и величиной смещений, характерных для данного типа разломов в области. Если предположить, что среднее вертикальное смещение при единичном событии составляет 2 метра (что, видимо, является характерным для активных разломов Северного Тянь-Шаня), то при угле падения разлома 45° смещение по падению составляет около 2,8 м.

В зависимости от степени уверенности в выделении положения разлома на местности, ширина зоны появления потенциального разрыва может колебаться. Там, где имеется высокая степень уверенности, зона потенциального разрыва быть узкой и хорошо определенной (от 0 до 10 м). Где степень уверенности меньше, зона потенциального разрыва будет более широкой (до 20 м).

- ✓ Зона 2 определяет область потенциальной интенсивной деформации, которую следует избегать при выборе наиболее подходящих мест для строительства. Такие деформации обычно выражены локальными антиклиналями в поднятом крыле разлома, ширина которых колеблется в достаточно широких пределах, а в опущенном крыле разлома деформации обычно не превышают 5-10м. При этом нужно разделять активные структуры, прилегающие непосредственно к зоне разлома, и структуры более широкого масштаба, в целом лежащие в пределах поднятого крыла разлома, но отражающие более обширные деформации. Понятно, что в зону 2 входят структуры, которые развиваются в пределах области «перекрытия»
- ✓ Зона 3 определяет область меньшей деформации, которая протягивается еще до 50 или больше на стороне висячего крыла и 15 м. на опущенной стороне разлома.

Таким образом, оценка ширины зоны влияния Центрально-Нарынского разлома в пределах Университета Ага-Хана в западной части г. Нарын, оцененная в рамках международной практики, не превышает 50-100 метров в сторону поднятого крыла и на 15-30 м в сторону опущенного крыла от линии магистрального разрыва. Отметим, что в данном случае рассматривается только очень узкая зона, которая связана непосредственно с основным разрывом.

Полученные нами материалы и данные, приведенные по территории Университета Ага-Хана позволяют заключить, что ширина влияния Центрально-Нарынского разлома, проходящего в непосредственной близости от г. Нарын составляет 60 метров в пределах поднятого крыла и до 20 метров в опущенном крыле.

Заключения; Последние подвижки по ближайшему к сооружениям проектируемого Верхне-Нарынского каскада ГЭС, Центрально-Нарынскому разлому произошли в период 2486 г. до н.э. — 214 г. н.э. Повторяемость подвижек по имеющимся данным составляет несколько тысяч лет, и за указанный период произошло, как минимум, две подвижки.

ЗАКЛЮЧЕНИЕ

Основные выводы и результаты, полученные в процессе работы над работой, заключаются в следующем:

- 1. Впервые для Восточной части в Нарынской впадины произведено детальное описание активных разломов, которые являются основой сейсмогенерирующих зон и являются источником сейсмической опасности этого региона.
- 2. Произведена оценка сейсмической опасности активных разломов, расположенных в непосредственной близости от основных сооружений проектируемого Верхне-Нарынского каскада ГЭС. Анализ всей свокупности палеосейсмологических данных позволяет считать, что в восточной части Нарынской впадины возможны землетрясения с магнитудами в диапазоне 7.0 7.5. Фоновая интенсивность сейсмических воздействий на площадках основных сооружений этих гидроузлов составляет 9 баллов.
- 3. Последние подвижки по ближайшему к сооружениям проектируемого Верхне-Нарынского каскада ГЭС, Центрально-Нарынскому разлому произошли в период 2486 г. до н.э. — 214 г. н.э. Повторяемость подвижек по имеющимся данным составляет несколько тысяч лет, и за указанный период произошло, как минимум, две подвижки.
- 4. Полученные нами материалы и данные, позволяют заключить, что ширина влияния Центрально-Нарынского разлома, проходящего в непосредственной близости от г. Нарын составляет 60 метров в пределах поднятого крыла и до 20 метров в опущенном крыле.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Полученные результаты проведенных исследований нами материалы и данные, приведенные по изученному территории позволяют заключить, что ширина влияния Центрально-Нарынского разлома, проходящего в непосредственной близости от г. Нарын, и проектируемых верхнее Нарынских каскадов ГЭС составляет 60 метров в пределах поднятого крыла и до 20 метров в опущенном крыле. Результаты исследования могут быть использованы при оценке сейсмической опасности территории расположения Верхне-Нарынского каскада ГЭС, а также при разработке генерального плана развития территории г. Нарын.

Перспектива дальнейшего развития оценки сейсмической опасности следует отметить что необходимые дальнейшие работы по расширению изученных территоррий и составлению достоверной карты сейсмического районировании Нарынской области на основе новых фактов по сейсмологии, сейсмотектонике и геофизике, полученные резултаты по восточно Нарынской впадине рекомендуется использовать. Знание наиболее опасных в сейсмическом отношении зон позволит уменьшить ущерб от возможных землетрясений.

ЛИТЕРАТУРА

- 1. Абдрахматов, К. Е. Активные разрывы Алабуга-Нарынской впадины [Текст] / К. Е. Абдрахматов, И. Н. Лемзин // Тянь-Шань в новейшем этапе геологического развития. Фрунзе, 1989. С. 78—90.
- Абдрахматов, К. Е. Палеосейсмичность Центрального Тянь-Шаня [Текст] / К.
 Абдрахматов, И. Н. Лемзин // Изв. АН КиргССР. Сер. Физ.-техн. и мат. науки.
 1990. № 3. С. 93–99.
- 3. Абдрахматов, К. Е. Тектонические движения позднего плейстоцена-голоцена территории Республики Кыргызстан [Текст]: автореф. дис. ... д-ра геол.-минерал. наук / К. Е. Абдрахматов. Бишкек, 1995. 35 с.
- 4. Абдрахматов, К. Е. Скорость смещений крыльев активных разломов северного Тянь-Шаня и сейсмическая опасность [Текст] / К. Е. Абдрахматов, Э. Э. Рахмединов // Изв. Нац. АН Кырг. ССР. 2016. № 2. С. 32–36
- Абдрахматов, К. Е. Центрально-Нарынский активный разлом (восточная часть) [Текст] / К. Е. Абдрахматов, Э. Э. Рахмединов // Изв. Нац. АН Кырг. Респ. Бишкек, 2017. № 1. С.10–13.
- Абдрахматов, К. Е. Сейсмическая опасность города Нарын [Текст] / К. Е. Абдрахматов, Э. Э. Рахмединов // Наука новые технологии и инновации Кыргызстана. Бишкек, 2018. № 8. С. 16–21.
- 7. Абдрахматов, К. Е. Скорость смещения и сейсмическая опасность разлома кажырты (Нарынская впадина) [Текст] / К. Е. Абдрахматов, Э. Э. Рахмединов // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. Бишкек, 2020. Вып. 1. С. 81–84.
- 8. Абдрахматов, К. Е. Активная тектоника Тянь-Шаня [Текст] / К. Е. Абдрахматов, С. Томпсон, Р. Уилдон. Бишкек: Илим, 2007. 71 с.
- 9. Карта сейсмического районирования территории Кыргызской Республики [Текст]: объяснит. записка / К. Е. Абдрахматов, К. Д. Джанузаков, А. Г. Фролова, В. Н. Погребной. Бишкек: [б.и.] 2012. 51 с.

- 10. Положение Центрально-Нарынского разлома в пределах территории г. Нарын и ширина зоны его влияния [Текст] / К. Е. Абдрахматов, Н. М. Камчыбеков, Э. Э. Рахмединов [и др.] // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. − 2023. № 1(21). С. 16–22.
- 11. Отчет лаборатории сейсмотектоники ИС НАН КР за 2015 г. [Текст] / К. Е. Абдрахматов, Э. Э. Рахмединов и др. Бишкек, 2015.
- 12. Аптикаев, Ф. Ф. Инструментальная шкала сейсмической интенсивности [Текст] / Ф. Ф. Аптикаев. М.: Наука и образование, 2012. 175 с.
- 13. Структура очага Сусамырского 1992 года землетрясения на основе анализа его геологических и сейсмических проявлений [Текст] / Б. М. Богачкин, А. М. Корженков, Э. Мамыров [и др.] // Изв. Рос. АН. Физика Земли. 1997. № 11. С. 3—18.
- 14. Землетрясение в северных цепях Тянь-Шаня 22 декабря 1910 г. (4 января 1911
- г.) [Текст] / К. И. Богданович, И. М. Карк, Б. Я. Корольков, Д. И. Мушкетов. СПб., 1914. Вып. 89. 278 с. (Тр. Геол. комитета. Новая сер.)
- 15. Гоби-Алтайское землетрясение [Текст] / ред. Н. А. Флоренсов, В. П. Солоненко. М.: Изд-во АН СССР, 1963. 392 с.
- 16. Гущенко, О. И. Реконструкция поля мегарегиональных тектонических напряжений сейсмоактивных областей Евразии [Текст] / О. И. Гущенко // Поля напряжений и деформаций в литосфере. М., 1979. С. 26–51.
- 17. Оползни и разрывы Кеминского землетрясения с Ms=8.2 в Киргизии [Текст] / Д. Дельво, К. Е. Абдрахматов, И. Н. Лемзин, А. Л. Стром // Геология и геофизика. 2001. Т. 42, № 10. С. 1667–1677.
- 18. Корженков, А. М. Сейсмогеология Тянь-Шаня (в пределах территории Кыргызстана и прилегающих районов) [Текст] / А. М. Корженков. Бишкек: Илим, 2006. 289 с.
- 19. О неизвестных сильных голоценовых землетрясениях на юге Иссык-Кульской котловины, Тянь-Шань [Текст] / А. М. Корженков, С. В. Абдиева, Й. Мажейка [и др.] // Вопросы инженер. сейсмологии. – 2014. – Т. 41, № 2. – С. 30– 40.

- 20. Лунина, О. В. Влияние напряженного состояния литосферы на соотношения параметров сейсмогенных разрывов и магнитуд землетрясений [Текст] / О. В. Лунина // Геология и геофизика. 2001. № 42. С. 1389–1398.
- 21. Макаров, В. И. Новейшая тектоническая структура Центрального Тянь-Шаня [Текст] / В. И. Макаров. М.: Наука, 1977. 172 с.
- 22. Современная геодинамика областей внутриконтинентального коллизионного горообразования (Центральная Азия) [Текст] / [К. Е. Абдарахманов, И. Т. Айтматов, А. Б. Бариков и др.; отв. ред. В. И. Макаров]. М.: Науч. мир, 2005. 400 с.
- 23. Палеосейсмология [Текст]: в 2т. / под ред. Д. Мак-Калпина. М.: Науч. мир, 2011. Т. 1. 560 с.; Т. 2. VIII, 387 с.
- 24. Марков, Г. А. Напряженное состояние пород и горное давление в структурах гористого рельефа [Текст] / Г. А. Марков, С. Н. Савченко. Л.: Наука, Ленингр. отд-ние, 1984. 140 с.
- 25. Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. [Текст]. М.: Наука, 1977. 535 с.
- 26. Рахмединов, Э. Э. Геоморфологические особенности территории южной части Срединного Тянь-Шаня [Текст] / Э. Э. Рахмединов // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. Бишкек, 2020. Вып. 2. С. 78–83.
- 27. Рахмединов, Э. Э. К вопросу сейсмичности центрального Тянь-Шаня [Текст] / Э. Э. Рахмединов // Научная ст. Рос. АН (НС РАН). 2017. С. 148-153
- 28. Рахмединов, Э. Э. Новейшие сейсмодислокации на южных склонах хребтов Джетим-тау и Нура-Тау (Центральный Тянь-Шань) [Текст] / Э. Э. Рахмединов // Научная ст. Рос. А (НС РАН). Бишкек, 2018. С.98–103.
- 29. Рахмединов, Э. Э. Сейсмическая опасность территории нарынской области (Кыргызская Республика) [Текст] / Э. Э. Рахмединов, Г. Тилек к., С. К. Байкулов // Современные техника и технологии в науч. исслед. Бишкек, 2019. Вып. 6. С. 197–201.

- 30. Рахмединов, Э. Э. Следы сильных палеоземлетрясений на востоке Нарынской впадины [Текст] / Э. Э. Рахмединов, К. Е. Абрахматов // Наука, новые технологии и иновации Кыргызстана. 2020. № 1. С. 42–46.
- 31. Рахмединов, Э. Э. Кайнозойские отложения Нарынской впадины[Текст] / Рахмединов Э.Э., Фортуна А.Б. // Вестн. Ин-та Сейсмологии Нац. АН Кырг. Респ. 2023. Вып. 1. С. 95-103.
- 32. Садыбакасов, И. Неотектоника центральной части Тянь-Шаня [Текст] / И. Садыбакасов. Фрунзе: Илим, 1972. 118 с.
- 33. Строительство в сейсмических районах [Текст]: свод правил СП 14.13330.2013, СНиП-II-7-81. М.: Минрегион, 2013. 126 с.
- 34. СНиП КР 20-02:2009. Сейсмостойкое строительство [Текст]: нормы проектирования. Бишкек: Госстрой, 2009. 109 с.
- 35. Стром, А. Л. Количественные характеристики сейсмогенных разрывов и их использование в палеосейсмогеологии и инженерной геологии [Текст]: дис. ... канд. геол.-минер. наук: 04.00.04 / А. Л. Стром. М., 1998. 155 с.
- 36. Стром, А. Л. Соотношение между параметрами сейсмогенных разрывов и магнитудой землетрясений [Текст] / А. Л. Стром, А. А. Никонов // Физика Земли. 1997. № 12. С. 55–67.
- 37. Стром, А. Л. Распределение смещений вдоль сейсмогенных разрывов и учет неравномерности подвижек при палеосейсмологических исследованиях [Текст] / А. Л. Стром, А. А. Никонов // Вулканология и сейсмология. 1999. № 6. С. 47—59.
- 38. Структурно-тектонические и сейсмические условия верхнего течения р. Нарын на участках размещения Нарынской ГЭС-1, Нарынской ГЭС-2, Нарынской ГЭС-3, Акбулунской ГЭС [Текст]: заключение ЦСГНЭО. М., 2013. 39. Уломов, В. И. Сейсмогеодинамика и сейсмическое районирование Северной Евразии [Текст] / В. И. Уломов // Вулканология и сейсмология. 1999. № 4/5. С.6—22.
- 40. Чедия, О. К. Морфоструктуры и новейший орогенез Тянь-Шаня [Текст] / О. К. Чедия. Фрунзе: Илим, 1986. 316 с.

- 41. Сейсмогравитационные структуры Тянь-Шаня Геология кайнозоя и сейсмотектоника Кыргызстана [Текст] / О. К. Чедия, К. Е. Абдрахматов, И. Н. Лемзин, А. М. Корженков // Геология кайнозоя и сейсмотектоника Тянь-Шаня. Бишкек, 1994. С. 85–97.
- 42. Чипизубов, Α. В. Выделение одновозрастных одноактных И палеосейсмодислокаций определение масштабам И ПО ИХ магнитуд палеоземлетрясений [Текст] / А. В. Чипизубов // Геология и геофизика. – 1998. – T. 39, № 3. – C. 386–398.
- 43. Шульц, С. С. Анализ новейшей тектоники и рельеф Тянь-Шаня [Текст] / С. С. Шульц. М.: ОГИЗ-ГЕОГРАФГИЗ, 1948. 222 с.
- 44. Отчёт по сейсмическому микрорайонированию территории г. Нарын [Текст] / Фонды ин-та сейсмологии Нац. АН Кырг. Респ. Бишкек, 2014.
- 45. Паталаха, Е. И. Условия образования рельефа Северного Тянь-Шаня и вероятный механизм процесса [Текст] / Е. И. Паталаха, Н. М. Чабдаров // Сейсмотектоника некоторых районов юга СССР. М., 1976. С. 80–90.
- 46. Тимуш, А. В. Сейсмотектоника литосферы Казахстана [Текст] / А. В. Тимуш. Алматы: Luxe Media Group, 2011. 590 с.
- 47. Шульц, С. С. Анализ новейшей тектоники и рельеф Тянь-Шаня [Текст] / С. С. Шульц. М.: Географгиз, 1948. 222 с.
- 48. Макаров, В. И. Новейшаятектоническая структура Центрального Тянь-Шаня [Текст] / В. И. Макаров. М.: Наука, 1977. 171 с.
- 49. Миколайчук, А. В. Структурная позиция надвигов в новейшем орогене Центрального Тянь-Шаня [Текст] / А. В. Миколайчук // Геология и геофизика. 2000. T. 41, № 7. C. 961–970.
- 50. Абдрахматов, К. Е. Новейшая структура Северного Тянь-Шаня и Чилико-Кеминская транспрессионная зона [Текст] / К. Е. Абдрахматов, А. Б. Джумабаева, С. О. Джанабилова // Наука, новые технологии и инновации. — 2015. — № 3. — С. 48–52.
- 51. Джумабаева, А. Б. Роль унаследованных сдвигов в сокращении земной коры Северного Тянь-Шаня [Текст] / А. Б. Джумабаева, К. Е. Абдрахматов // Прогноз

- землетрясений, оценка сейсмической опасности и сейсмического риска Центр. Азии, 7-й Казахст.-Кит. Междунар. симп. 2-4 июня 2010 г. Алматы, 2010. C.115–116.
- 52. Омуралиева, А. Динамика сейсмических процессов на сопряжении областей горообразования Памира и Тянь-Шаня: Заалайского поднятия и Алайской впадины [Текст] / А. Омуралиева, М. Омуралиев // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. 2018. № 1(11), 2018. С. 57–78.
- 53. Гребенникова, В. В. Сейсмичность Заалайского хребта (Памиро-Алайская зона) [Текст] / В. В. Гребенникова, А. Б. Фортуна // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. 2018. № 1(11), 2018. С.18–31.
- 54. Никонов, А. А. Сейсмотектоника и землетрясения зоны сближения Памира и Тянь-Шаня [Текст] / А. А. Никонов, А. В. Ваков, И. А. Веселов. М.: Наука, 1983. 240 с.
- 55. Садыбакасов, И. Неотектоника центральной части Тянь-Шаня [Текст] / И. Садыбакасов. Фрунзе: Илим, 1972. 118 с.
- 56. Структура очага Сусамырского 1992 года на основании анализа его геологических и сейсмологических проявлений [Текст] / Б. М. Богачкин, А. М. Корженков, Э. Мамыров [и др.] // Физика Земли. 1997. № 11. С. 3—18.
- 57. Землетрясение в северных цепях Тянь-Шаня 22 декабря 1910 г. (4 января 1911 г.) [Текст] / К. И. Богданович, И. М. Карк, Б. Я. Корольков, Д. И. Мушкетов. –
- СПб., 1914. Вып. 89. 256 с. (Тр. Геол. комитета. Новая сер.).
- 58. Оползни и разрывы Кеминского землетрясения 1991 г. с Ms 8,2 в Киргизии [Текст] / Д. Дельво, К. Е. Абдрахматов, И. Н. Лемзин, А. Л. Стром // Геология и геофизика. 2001. Т. 42, № 10. С. 1667–1677.
- 59. Хромовских, В. С. Сейсмогеология Южного Прибайкалья [Текст] / В. С. Хромовских. М.: Наука, 1965. 121 с.
- 60. Ризниченко, Ю. В. Проблема величины землетрясений [Текст] / Ю. В. Ризниченко // Магнитуда и энергетическая классификация землетрясений. М., 1974. Т. 1. С. 43–78.

- 61. Раутиан, Т. Г. Проблема определения энергии землетрясений [Текст] / Т. Г. Раутиан // Магнитуда и энергетическая классификации землетрясений. М., 1974. Т. 2. С. 107–112.
- 62. Садовский, М. А. Об оценке полной энергии коровых землетрясений [Текст] / М. А. Садовский, О. К. Кедров, И. П. Пасечник // Комплексные исследования по физике Земли. М., 1989. С. 203–214.
- 63. Касахара, К. Механика землетрясенй [Текст] / К. Касахара. М.: Мир, 1985. 264 с.
- 64. Пустовитенко, Б. Г. Об энергетической оценке землетрясений Крымско-Черноморского региона [Текст] / Б. Г. Пустовитенко, В. Е. Кульчитский // Магнитуда и энергетическая классификация землетрясений. М., 1974. Т. 2. С. 113–124.
- 65. Мамыров, Э. Глобальные и региональные изменения статического сброшенного сейсмического напряжения крупных коровых землетрясений за 1976-20133 гг. [Текст] / Э. Мамыров // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. -2015. N = 1. C. 65-79.
- 66. Мамыров, Э. Землетрясения Тянь-Шаня: магнитуда, сейсмический момент и энергетический класс [Текст] / Э. Мамыров. Бишкек: Инсанат, 2012. 234 с.
- 67. Штейнберг, В. В. Параметры колебаний грунтов при сильных землетрясениях [Текст] / В. В. Штейнберг // Вопросы инженер. сейсмологии. 1986. Вып. 27. С. 7–22.
- 68. Мушкетов, И. В. Каталог землетрясений Российской империи [Текст] / И. В. Мушкетов, А. П. Орлов. СПб.: Тип. императ. АН, 1893. 583 с.
- 69. Чипизубов, А. В. Реконструкция и прогноз изменений сейсмичности Земли [Текст] / А. В. Чипизубов. Иркутск: ИЗК СО РАН, 2008. 240 с.
- 70. Моги, К. Предсказание землетрясений [Текст] / К. Моги. М.: Мир, 1988. 382 с.
- 71. Фридман, А. М., Брагин В.Д. О связи глобальной и локально сейсмической активности [Текст] / А. М. Фридман, В. Д. Брагин // Физика Земли. $2005. N_{\odot}$ 9. С. 54-57.

- 72. Беньофф, Г. Накопление и высвобождение деформаций по наблюдениям сильных землетрясений [Текст] / Г. Беньофф // Слабые землетрясения. М.,1961. С. 199–210.
- 73. Курскеев, А. К. Землетрясения и сейсмическая безопасность Казахстана [Текст] / А. К. Курскеев. Алматы: Эверо, 2004. 504 с.
- 74. Мамыров, Э. Главные периоды изменения сейсмического режима Тянь-Шаня [Текст] / Э. Мамыров, В. А. Маханькова, Н. Эрнесова // Сейсмопрогностические наблюдения на территории Азербайджана. Баку, 2012. С. 307–313.
- 75. Потенциальные сейсмические очаги и сейсмические предвестники землетрясений основа реального сейсмического прогноза [Текст] / [Е. А. Рогожин, Л. И. Иогансон, В. С. Захаров и др.]. М.: Светоч Плюс, 2011. 368 с.
- 76. Ромашкова, Л. Л. Динамика сейсмической активности до и после сильных землетрясений Мира [Текст] / Л. Л. Ромашкова, В. Г. Кособоков // Вычисл. сейсмология. 2001. № 32. С. 162–189.
- 77. Баласанов, Ю. Г. Скользящий средний метод. Слуцкого-Юла эффект [Текст] / Ю. Г. Баласанов // Вероятность и математическая статистика: энцикл. М., 1999. С. 579–583.
- 78. Выделение периодичностей в сейсмическом режиме [Текст] / А. А. Любушин, В. Ф. Писаренко, В. В. Ружич [и др.] // Вулканология и сейсмология. -1998. № 1. C. 62-67.
- 79. Ритмы в сейсмичности Земли [Текст] / А. Г. Гамбурцев, Н. В. Кондорская,
 О. В. Олейник [и др.] // Физика Земли. 2004. № 5. С. 95–107.
- 80. Мамыров, Э. Землетрясения Тянь-Шаня: магнитуда, сейсмический момент и энергетический класс [Текст] / Э. Мамыров. Бишкек: Инсанат, 2012. 234 с.
- 81. Афанасьев, В. Н. Анализ временных рядов и прогнозирование [Текст] / В. Н. Афанасьев, М. М. Юзбашев. М.: Финансы и статистика, 2001. 228 с.
- 82. Дуброва, Т. А. Статистические методы прогнозирования в экономике [Текст] / Т. А. Дуброва, М. Ю. Архипова. М.: Моск. ГОСУНИР экономики, статистики и информатики, 2004. 136 с.

- 83. Мартино, Д. Технологическое прогнозирование [Текст] / Д. Мартино. М.: Прогресс, 1977. 591 с.
- 84. Христиановский, В. В. Анализ временных рядов в экономике [Текст]: практика применения / В. В. Христиановский, В. П. Щербина. Донецк: ДонНУ, 2011. 125 с.
- 85. Омуралиев, М. Опыт оценки сейсмической среднесрочной опасности на территории Кыргызстана и краткосрочной опасности территории США [Электронный ресурс] / М. Омуралиев, А. Омуралиева // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. 2013. № 1. Режим доступа: интернетжурн. URL: http://www.journal.seismo.kg/archive/journal_2013-1/article11.pdf. Загл. с экрана.
- 86. Опыт комплексного сейсмического районирования на примере Чуйской впадины (Северный Тянь-Шань) [Текст] / отв. ред. О. К. Чедия, Л. М. Сабитова. Бишкек: Илим, 1975. 189 с.
- 87. Геологические основы сейсмического районирования Иссык-Кульской впадины [Текст]: Сев. Тянь-Шань: сб. ст. / отв. ред. О. К. Чедия, Л. М. Сабитова. Фрунзе: Илим, 1978. 152 с.
- 88. Детальное сейсмическое районирование Восточной Киргизии [Текст] / [К. Д. Джанузаков, В. И. Кнауф, О. К. Чедия и др.]. Фрунзе: Илим, 1988. 250 с.
- 89. Губин, И. Е. Сейсмогенные разрывы и их значения для сейсморайонирования [Текст] / И. Е. Губин // Геотектоника. 1974. № 6. С.29—40.
- 90. Горшков, Г. П. Землетрясения на территории Советского Союза [Текст] / Г. П. Горшков. М.: Географиздат, 1949. 120 с.
- 91. Ружич, В. В. Анизотропность земной коры центрального участка БАМ в связи с сейсмичностью [Текст] / В. В. Ружич // Сейсмическая опасность и сейсмостойкое строительство БАМ. Иркутск, 1979. С. 32–34.
- 92. Агамирзоев, Р. А. Сейсмотектоника Азербайджанской части Большого Кавказа [Текст] / Р. А. Агамирзоев. Баку: Элм, 1987. 124 с.

- 93. Петрушевский, Б. А. Геологические условия возникновения землетрясений [Текст] / Б. А. Петрушевский // Сов. геология. -1960. -№ 2. -C. 74-82.
- 94. Кнауф, В. И. О связи между региональными сейсмическими зонами и домезозойскими структурами Тянь-Шаня [Текст] // Изв. АН СССР. Физика Земли. 1973. \mathbb{N}_2 5. С.35–45.
- 95. Геологическая среда возникновения землетрясений Киргизии [Текст] / [В. И. Кнауф, А. В. Миколайчук, К. Нурманбетов и др.]. Фрунзе: Илим, 1985. 87 с.
- 96. Нурманбетов, К. Краткий обзор исследований геологический среды возникновения и размещения землетрясений в Кыргызской части Тянь-Шаня и сейсмичность [Текст] / К. Нурманбетов // Изв. Нац. АН Кырг. Респ. 2013. \mathbb{N} 1. С. 45–51.
- 97. Нурманбетов, К. Ичкелетау-Сусамырский разлом- сейсмогенерирующая структура Северного-Тянь-Шаня [Текст] / К. Нурманбетова, Ч. А. Осмонбаева // Изв. Нац. АН Кырг. Респ. 2010. № 1. С. 81–86.
- 98. Абдрахматов, К. Е. Четвертичная тектоника Чуйской впадины [Текст] / К. Е. Абдрахматов. Фрунзе: Илим, 1988. 118 с.
- 99. Абдрахматов, К. Е. Тектонические движения позднего плейстоцена и голоцена территории Кыргызской Республики [Текст]: автореф. дис. ... д-ра геол.-мин. Наук / К. Е. Абдрахматов. Бишкек: Илим, 1995. 35 с.
- 100. Абдрахматов, К. Е. Палеосейсмичность Центрального Тянь-Шаня [Текст]
 / К. Е. Абдрахматов, И. Н. Лемзин // Изв. АН КиргССР. 1990. № 4. С.21–
 25.
- 101. Абдрахматов, К. Е. Активная тектоника Тянь-Шаня [Текст] / К. Е. Абдрахматов, С. Томпсон, Р. Уилдон. Бишкек: Илим, 2007. 70 с.
- 102. Палеосейсмология [Текст]: в 2 т. / под ред. Джеймса П. Мак Калпина. М.: Науч. мир, 2011.- Т. 2.-400 с.

- 103. Стром, А. Л., Никонов А.А. Соотношения между параметрами сейсмогенных разрывов и магнитудой землетрясений [Текст] / А. Л. Стром, А. А. Никонов // Физика Земли. – 1997. – № 12. – С. 55–67.
- 104. Стром, А. Л. Количественные характеристики сейсмогенных разрывов и их использование в палеосейсмологии и инженерной геологии [Текст]: автореф. дис. ... канд. геол.-мин. наук / А. Л. Стром. М., 1998. 25 с.
- 105. Абдрахматов, К. Е. Сегментация Иссык-Атинского разлома [Текст] / К. Е. Абдрахматов, А. Джумабаева // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. 2014. № 3. C. 24–31.
- 106. Временная кластеризация сильных землетрясений в Северном Тянь-Шане [Текст] / К. Е. Абдрахматов, А. Л. Стром, Д. Дельво [и др.] // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. 2013. № 1(1). С. 9–15.
- 107. Абдрахматов, К. Е. Сегментация Кемино-Чиликской зоны активных разломов [Текст] / К. Е. Абдрахматов, А. Б. Джумабаева // Вестн. ин-та сейсмологии Нац. АН Кырг. Респ. -2013. -№ 1(1). C. 16–21.
- 108. Оценка сейсмической опасности северо-западного Прииссыкулья на основе данных об активных разломах [Текст] / К. Е. Абдрахматов, Ч. А. Осмонбаева, А. Б. Джумабаева [и др.] // Наука и новые технологии. 2011. № 1/2. С.14—19.
- 109. Джумабаева, А. Б. Сейсмогенные разрывы Кочкорской впадины [Текст] / А. Б. Джумабаева // Изв. Нац. АН Кырг. Респ. 2012. № 3. С. 41–44.
- 110. Чаримов, Т. Первый каталог палеосейсмодислокаций Тянь-Шаня [Текст] / Т. Чаримов // Проблемы современной сейсмогеологии и геодинамики Центр. и Вост. Азии: Материалы совещ. Иркутск, 2007. Т. 2. С. 203–205.
- 111. О средневековых землетрясениях Прииссыкулья (Тянь-Шань) по данным археосейсмологии [Текст] / А. М. Корженков, Е. А. Рогожин, С. В. Абдиева [др.] // Тезисы докл. Шестого Междунар. симп. Бишкек, 2014. С. 376—380.
- 112. The Ms = 7.3 1992 Suusamyr, Kyrgyzstan earthquake: 2. Aftershock Focal Mechanisms and Surface Deformation [Text] / S. Ghose, R. J. Mellors, A. V.

- Korjenkov [et al.] // Bulletin of the Seismological Society of America. 1997. N 87. P. 23–38.
- 113. Global Seismic Hazard Assessment Program [Text] // Annali di Geofisica. 1999. Vol. 42, No. 6. P. 957–1230.
- 114. Madariaga, R. The El Asnam (Algeria) earthquake of October, 10, a review [Text] / R. Madariaga // A Collection of Papers of International Symposium on Continental Seismicity and Earthquake Prediction. Beijing, 1984. P. 198–213.
- 115. Seismotectonics of the El Asnam earthquake [Text] / M. Ouyed, M. Meghraoui, A. Cisternas [et al.] // Nature. 1981. N 292. P. 26–31.
- 116. Deformations associated with the El Asnam earthquake of 10 October 1980: geodetic deformation of vertical and horisontal movements [Text] / J. C. Ruegg, M. Kasser, A. Tarantola [et al.] // Seismological Society of America Bulletin. 1982. N 72. P. 2227–2244.
- 117. Schwartz, D. P. Fault behaviour and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones [Text] / D. J. Schwartz, K. J. Coppersmith // Geophys. Res. 1984. N 89. P. 5681–5698.
- 118. Wells, D. L. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement [Text] / D. L. Well, K. J. Coppersmith // Bull. Seism. Soc. Am. 1994. N 84. P. 974–1002.
- 119. Relations between surface deformation, fault geometry, seismicity and rupture characteristics during the El Asnam (Algeria) earthquake of 10 October 1980 [Text] / G. Yelding, J. A. Jackson, G. C. P. King [et al.] // Earth and Planetary Science Letters. 1981. N 56. P. 287–304.
- 120. Naryn Geomorphology and Seismic Assessment Report Preliminary Report [Text] / University of Central Asia (UCA) UCA. London: UK. Bard, P.Y., and M. Bouchon, 1980.
- 121. Wells, D. L. Empirical relationships among magnitude, rupture length, rupture area, and surface displacement [Text] / D. L. Wells, K. J. Coppersmith // Bull. Seismol. Soc. Am. 1994. Vol. 84. P. 974–1002.

- 122. Paloseismological investigations in the northern Tien Shan near Bishkek [Text] / A. Landgraf, A. Dzhumabaeva, K. Abdrakhmatov [et al.] // Materials of International conference 2 Remoute and Ground-based Earth Observations in Central Asia. Bishkek, 2014. P. 48–52.
- 123. Inherited strike-slip faults as an origin for basement-cored uplifts: Example of the Kyngey and Zailiskey ranges, northern Tian-Shan [Text] / J. Selander, M. Oskin, Ch. Ormukov, K. Abdrahmatov // Tectonics. -2012. Vol. 31, N 4. tc 4026.
- 124. Engdahl, E. R. Globalseismity: 19900-1999 [Text] / E. R. Engdahl, A. Villasenor // International Hand book of earthquake and Engineering Seismology. 2002. Akademik press, P. 665–690.
- 125. Xanthakis, J. Possibly periodicites of the annually released global seismic energy $(M \ge 7.9)$ during the period 1898-1971 [Text] / J. Xanthakis // Tectonophysics. 1982. Vol. 81, N_0 1/2. P. 155–164.
- 126. Lindholm, C. D. Periodicity in seismicity: examination of the four catalogs [Text] / C. D. Lindholm, J. Hanskov, M. A. Sellevolt // Tectonophysics. 1991. Vol. 191, №1/2. P. 155–164.
- 127. Increased long-range intermediate magnitude earthquake activity prior to strong earthquakes in California [Text] / L. Knopoff, T. Levshina, V. I. Keilis-Borok, C. Mattoni // J. Geophys. Res. 1996. Vol. 101, B3. P. 5779–5796.
- 128. Bath, U. Correlation between regional and global seismic activity [Text] / U. Bath // Tectonophysics. 1984. Vol. 109, N 1/2. P. 187–194.
- 129. Alborella, N. N. Use of non –parametric correlation test the study of seismic interrelations [Text] / N. N. Alborella, M. Mucciarelli, E. Mantovani // J. Geophys. 1989. Vol. 96, № 1. P.185–188.
- 130. Scherbaum, F. Sourse Parsmeters and Scaling Laws of the 1978 Swabian Jura (Southwest Germany) Aftershocks [Text] / F. Scherbaum, D. Stoll // Bull. Seismol. Soc. America. 1983. Vol. 73, N5. P. 1321–1343.
- 131. Scherbaum, F. Vaziations of Apparent Stresses and stress Drops Prior to the Earthquake of G May 1984 (mb = 5.8) in the Adak Seismic Zone [Text] / F.

- Scherbaum, C. Kisslinger // Bull Seismol. Soc. America. 1984. Vol. 74, N 6. P. 2577–2592.
- 132. Aki, K. Quantitave Seismology. Theory and Methods [Text] / K. Aki, P. A. Richards. W. H. Freeman, 1983. 948 p.
- 133. Brune, J. N. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes [Text] / J. N. Brune // J. Geophys. Res. 1970. Vol. 75, N 26. P. 4997–5009.
- 134. Thatcher, W. Source Parameters of Southern California earthquakes [Text] / W. Thatcher, C. Hahks //J. Geophys. Res. 1973. Vol.78, N 35. P. 8547–8575.
- 135. Mamyrov, E. Control Parameters of Magnitude Seismic Moment Correlation for the Crustal Earthquakes [Text] / E. Mamyrov // Open Journal Earthquake Res. 2013. N 2. P. 60–74.
- 136. Lay, T., Wallace T.C. Modern Global Seismology [Text] / T. Lay, T. C. Wallace // Academic Press. 1995. P. 496.
- 137. Kanamori, H. The Energy Release in Great Earthquakes [Text] / H. Kanamori // Journal of Geophysical Research. 1977. Vol. 82, N 20. P. 2981–2987.
- 138. Determination of Earthquake Energy Release and ML Using TERRA scope [Text] / H. Kanamori, J. Mori, E. Hauksson [et al.] // Bull. Seism. Soc. America. 1993. Vol. 83. P. 330–346.
- 139. Gutenberg, B. Earthquake magnitude, intensity, energy and acceleration (second paper) [Text] / B. Gutenberg, C. F. Richter // Bull. Seismol. Soc. Am. 1956. Vol. 46. P. 105–145.
- 140. Unraveling the Quaternary deformation history of the North Pamir collision zone: New paleoseismological data from the Pamir Frontal Thrust (39.5°N, 72.5°E) [Text] / M. Patyniak, A. J. R. Landgraf, A. Arrowsmith [et al.]. Kyrgyzstan, Central Asia.
- 141. Strecker. Seismic Behavior Along a Fault Segment in an Active Continental Collision Zone: New Paleoseismic and Structural Data of the Pamir Frontal Thrust in the Alai Valley [Электронный ресурс] / M. Patyniak, A. Landgraf, A. Dzhumabaeva [et al.]. Режим доступа: Kyrgyzstan, Central Asia. 1EGU2020-4599

- https://doi.org/10.5194/egusphere-egu2020-4599 EGU General Assembly 2020 © Author(s) 2020. Загл. с экрана.
- 142. The Pamir Frontal Thrust fault: Holocene full-segment ruptures and implications for complex segment interactions in a continental collision zone. Journal of Geophysical Research: Solid Earth, 126, e2021JB022405 [Электронный ресурс] / М. Patyniak, A. Landgraf, A. Dzhumabaeva [et al.]. Режим доступа: https://doi. org/10.1029/2021JB02. Загл. с экрана.
- 143. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 yearscal BP [Text] / P. J. E. Reimer, A. Bard, J. W. Bayliss [et al.] // Radiocarbon. 2013. No. 4. P. 1869–1887.
- 144. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP) [Text] / P. J. Reimer, W. E. Austin, E. Bard [et al.] // Radiocarbon. 2020. N 62(4). P. 725–757.
- 145. Integration of paleoseismic data from multiple sites to develop an objective earthquake chronology: Application to the Weber segment of the Wasatch fault zone, Utah. [Text] / C. B. DuRoss, S. F. Personius, A. J. Crone [et al.] // Bulletin of the Seismological Society of America. 2011. N 101(6). P. 2765–2781.
- 146. Biasi, G. P. San Andreas Fault Rupture Scenarios from Multiple Paleoseismic Records: Stringing Pearls [Text] / G. P. Biasi, R. J. Weldon // Bulletin of the Seismological Society of America. 2009. N 99(2A). P. 471–498.
- 147. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior [Text] / A. A. Landgraf, K. E. Dzhumabaeva, M. R. Abdrakhmatov [et al.] // The northern Tien Shan, Kyrgyzstan, J. Geophys. Res. 2016. Vol. 121, No. 5. P. 3888–3910.
- 148. Paleoseismic Record of Three Holocene Earthquakes Rupturing the Issyk-Ata Fault near Bishkek, North Kyrgyzstan [Text] / A. Patyniak, A. Landgraf, K. E. Dzhumabaeva [et al.] // Bulletin of the Seismological Society of America. 2017. N 107 (6). P. 2721–2737.
- 149. Hanks, T. C. A moment magnitude scale [Text] / T. C. Hanks, H. Kanamori //
 Journal of Geophysical Research: Solid Earth. 1979. N 84(B5). P. 2348–2350.

- 150. Wells, D. L. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement [Text] / D. L. Wells, K. J. Coppersmith // Bulletin of the Seismological Society of America. 1994. N 84(4). P. 974–1002.
- 151. Kulikova, G. Source parameters of the major historical earthquakes in the Tien-Shan region from the late 19th to the early 20th century [Text] / G. Kulikova // University of Potsdam. Doctoral Thesis. 2016. P. 164.
- 152. Late Cenozoic tectonic development of the intramontane Alai Valley (Pamir-Tian Shan region, Central Asia) [Text] / I. Coutand, M. R. Strecker, J. R. Arrowsmith [et al.] // Tectonics. 2002. Vol. 21, N 6. P. 1053.
- 153. Quaternary deformation in the eastern Pamirs, Tadzhikistan and Kyrgyzstan [Text] / M. R. Strecker, W. Frisch, M. W. Hamburger // Tectonics. 1995. N 14(5). P. 1061–1079.
- 154. Differential structural and geomorphic mountain-front evolution in an active continental collision zone: The northwest Pamir, southern Kyrgyzstan [Text] / M. R. Strecker, G. E. Hilley, J. R. Arrowsmith, I. Coutand // Geological Society of America Bulletin. 2003. N 115(2). P. 166–181.
- 155. Arrowsmith, J. R. Seismotectonic range-front segmentation and mountainbelt growth in the Pamir-Alai region, Kyrgyzstan (India-Eurasia collision zone) [Text] / J. R. Arrowsmith, M. R. Strecker // Geological Society of America Bulletin. 1999. N 111(11). P. 1665–1683.
- 156. Strain partitioning at the eastern Pamir-Alai revealed through SAR data analysis of the 2008 Nura earthquake [Text] / K. Teshebaeva, H. Sudhaus, H. Echtler [et al.] // Geophysical Journal International. 2014. N 198(2). P. 760–774.
- 157. GPS velocity field for the Tien Shan and surrounding regions [Text] /A. Zubovich, X. Wang, Y. Scherba [et al.] // Tectonics. –2010. N 29. P. TC6014.
- 158. Tectonic interaction between the Pamir and Tien Shan observed by GPS [Text] / A. V. Zubovich, T. Schöne, S. Metzger [et al.] //Tectonics. 2016. N 35(2). P. 283–292.

- 159. The 2015 Mw7. 2 Sarez strike-slip earthquake in the Pamir interior: Response to the underthrusting of India's western promontory [Text] / S. Metzger, B. Schurr, L. Ratschbacher [et al.] // Tectonics. 2017. N 36(11). P. 2407–2421.
- 160. Cobbold, P. R. Cenozoic transpression and basin development [Text] / P. R. Cobbold, E. Sadybaksov, J. C. Thomas // Geodynamic evolution of sedimentary basins. Paris, Editions Technip, 1996. P. 181–202.
- 161. Suppe, J. Geometry and kinematics of fault-bend folding [Text] / J. Suppe // American Journal of Science. 1983. Vol. 283, N 7. P. 684-721.
- 162. Suppe, J., and Medwedeff, D. A., 1990, Geometry and kinematics of fault-propagation folding [Text] / J. Suppe, D. A. Medwedeff // Eclogae Geologicae Helvetiae. 1990. Vol. 83, N 3. P. 409-454.
- 163. Erslev, E. A. Basement-cover geometry of Laramide fault- propagation folds [Text] / E. A. Erslev, J. L. Rogers // Laramide basement deformation in the Rocky Mountain foreland of the Western United States.: Special Paper 280: Boulder, Geological Society of America. 1993. P. 125–146.
- 164. Inherited strike-slip faults as an origin for basement-cored uplifts: Example of the Kungey and Zailiskey ranges, Northern Tian Shan [Text] / J. Selander, M. Oskin, C. Ormukov, K. Abdrakhmatov // Tectonics. 2012. –N 31(4). P. TC4026(1{22}). ISSN 1944-9194, doi: 10.1029/2011TC003002.