ОШСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени М.М.АДЫШЕВА

На правах рукописи

УДК: 913.504.05

Дуванакулов Мусабек Абдушарипович

Освоение нерудных месторождений и его влияние на геоэкологическое состояние региона (на примере южного региона Кыргызстана)

25.00.36 - геоэкология

Диссертация на соискание ученой степени кандидата географических наук

Научный руководитель:

доктор географических наук, профессор Чодураев Темирбек Макешович

СОДЕРЖАНИЕ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ4
ВВЕДЕНИЕ5
ГЛАВА 1. ОБЗОР НАУЧНОЙ ЛИТЕРАТУРЫ12
1.1.Степень изученности проблемы в области освоения
нерудных материалов
1.2. Природные условия формирования и освоения нерудных материалов
в научной литературе25
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ34
2.1.Материалы исследования
2.2. Методы исследования
ГЛАВА 3. РЕЗУЛЬТАТЫ ЛИЧНЫХ ИССЛЕДОВАНИЙ
И ИХ ОБСУЖДЕНИЯ60
3.1.Освоенность нерудных месторождений на территории южного региона
Кыргызстана и их геоэкологическое состояние
3.2.Геоэкологические проблемы освоении нерудных месторождений
южного региона Кыргызстана7
3.3.Воздействие деятельности нерудных предприятий на воздушную среду83
3.4.Воздействие деятельности нерудных предприятий на водную среду
южного региона Кыргызстана103
3.5.Воздействие деятельности нерудных предприятий на земельные ресурсы
южного региона Кыргызстана107
3.6.Воздействие деятельности нерудных предприятий на биоресурсы
южного региона Кыргызстана110
ГЛАВА 4. ПУТИ СНИЖЕНИЯ ЗАГРЯЗНЕНИЙ И РАЦИОНАЛЬНОГО
ПРИРОДОПОЛЬЗОВАНИЯ НЕРУДНЫХ МЕСТОРОЖДЕНИЙ ЮЖНОГО
РЕГИОНА КЫРГЫЗСТАНА116
4.1.Обоснование выбора метода по снижению выбросов

нерудных предприятий	116
4.2.Предлагаемые меры по регулированию природопользования	
на территории нерудных месторождений	139
4.3. Рекультивация разрушенных земель при освоении	
нерудных месторождений	143
ОСНОВНЫЕ ВЫВОДЫ И РЕКОМЕНДАЦИИ	149
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	151

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

ОС – окружающая среда

ПДК – предельно-допустимая концентрация

СТА – синхронного термического анализа

ПГС – песчано-гравийных смесей

ЭГС -эколого-геологические системы

ПИ – полезные ископаемые

ТБО – твердые и бытовые отходы

УПРЗА – Унифицированная программа расчета загрязнения атмосферы

ВВ – вредные вещества

ИЗВ – Индекс загрязнения воды

ВЛЭ – высоковольтные линии электропередач

СЗЗ – санитарно-защитные зоны

НМУ – неблагоприятные метеорологические условия

ВВЕДЕНИЕ

Актуальность темы. С учетом современных тенденций экономического развития, освоение нерудных месторождений становится важным аспектом для стран с богатыми природными ресурсами, таких как Кыргызстан. Южный регион страны, обладающий значительными запасами нерудных материалов, представляет собой уникальную природную и социально-экономическую среду, в которой процесс разработки природных ресурсов оказывает значительное влияние на геоэкологическое состояние. Нерудные ресурсы, включая песок, гравий, известняк и другие минералы, играют ключевую роль в строительстве, инфраструктурном развитии и других отраслях, способствуя экономическому росту и созданию рабочих мест. Освоение нерудных месторождений является важным компонентом экономического развития региона, однако оно сопряжено с множеством экологических рисков.

В данном контексте важно осознавать, что деятельность по добыче нерудных ресурсов может приводить к негативным последствиям для окружающей среды, включая ухудшение качества воды, загрязнение почвы и воздуха, а также потерю биологического разнообразия. Эти изменения могут оказывать длительное воздействие на экосистемы региона и, следовательно, на здоровье и благосостояние местного населения. В связи с этим существует необходимость изучения как положительных, так и отрицательных последствий разработки нерудных ресурсов, акцентируя внимание на изменениях в природной среде, уровне загрязнения, а также на социально-экономических аспектах.

В результате освоения нерудных месторождений отмечается увеличение экономической активности, создание рабочих мест и улучшение инфраструктуры. Однако, наряду с этим, наблюдаются негативные изменения в экосистемах: ухудшение качества воды, почвы и воздуха, а также потеря биологического разнообразия. Исследования по добыче минерально-сырьевых

ресурсов показывают, что разработка нерудных материалов составляет 62,9% от общего запаса добываемых ресурсов (Курчин, 2013). Разработка этих ресурсов связана с ростом уровня стройиндустрии изучаемого региона.

Как известно, любая антропогенная деятельность в какой-то степени воздействует на природную среду, и отражается на ее экологическом состоянии. Следует отметить последствия этой деятельности связанные с нарушением поверхности террас, которые изымаются от других видов хозяйственной деятельности и приводит к загрязнению воздуха, почв, донных отложений, природных вод, биоты и абиоты территории разведки и разработки нерудных месторождений полезных ископаемых.

Связь темы диссертации c приоритетными научными направлениями, крупными программами (проектами), научными научно-исследовательскими работами, основными проводимыми образовательными и научными учреждениями. Тема диссертационной работы связано с научно-исследовательскими работами кафедры геологии полезных ископаемых Ошского технологического университета имени М.М.Адышева по изучению экологических проблем по разработке нерудных месторождений и научными проектами: "Определение негативного воздействия интенсивного забора песчано-гравийного материала из русел рек и водотоков", 2023-2024гг.; "Разработка инновационных технологий производства декоративных строительных изделий для улучщения архитектурного облика города Ош", 2022-2023гг.

Цель и задачи исследования. Целью данной работы явилось геоэкологическая оценка степени влияния на окружающую среду деятельности по освоению нерудных месторождений южного региона Кыргызстана.

Для достижения поставленной цели предполагалось решить следующие задачи:

-провести литературный анализ изученности проблемы освоения нерудных месторождений южного региона Кыргызстана;

-сопоставить существующие методы и методологии освоения нерудных месторождений южного региона Кыргызстана;

-определить степень влияния деятельности по освоению нерудных материалов на окружающую среду южного региона Кыргызстана;

-предложить эффективные способы по снижению загрязнения окружающей среды от деятельности по разработке и освоению нерудных материалов.

Научная новизна полученных результатов. Проведен комплексный анализ деятельности по разведке, разработке и освоению нерудных материалов в рамках изучаемой территории и предложены пути по охране окружающей среды от этой деятельности.

Впервые:

-изучены и комплексно оценено деятельность, связанная с освоением нерудных материалов с учетом физико-географических и климатических особенностей южного региона Кыргызстана;

-проанализировано степень разработанности проблемы и выявлены прогрессивные способы освоения нерудных материалов;

-установлен уровень воздействия изучаемой деятельности на окружающую среду и предложены пути по снижению этого влияния.

Практическая значимость полученных результатов. Результаты проведенных научных исследований имеют важное теоретическое и практическое значение при развитии деятельности горнорудных предприятий, занимающихся разработкой и освоением нерудных материалов. Полученные показатели важны для оценки воздействия деятельности предприятий по разработке нерудных материалов. Предложенные методы по снижению выбросов могут служить основой для принятия превентивных экологических мер для подобных предприятий в области освоения нерудных материалов.

Экономическая значимость полученных результатов. Результаты полученных данных позволяют снизить загрязнение на окружающую среду до

68,8% выбросов, что сокращение выбросов составлляют 2036,56 тонн, а предотвращенный ущерб составит 42,794 млн. сом.

Основные положения диссертации, выносимые на защиту:

проблем 1.Изучение освоения нерудных полезных ископаемых свидетельствует о значительном недостатке в научных исследованиях, касающихся экологических мер, направленных на защиту территории разработки и её окрестностей. В частности, текущие исследования не обеспечивают адекватной оценки и системного подхода к решению вопросов, связанных с охраной окружающей среды в контексте горных работ. В ходе существующих методов разработки месторождений анализа ископаемых было выявлено, что отсутствуют эффективные индивидуальные подходы, позволяющие точно определить степень воздействия добычи на экологические компоненты. Это создает серьезные препятствия для разработки обоснованных и действенных мер по минимизации негативных последствий, связанных с эксплуатацией природных ресурсов. Таким образом, необходимость в создании и внедрении новых методологических принципов оценки воздействия на окружающую среду становится особенно актуальной, что позволит обеспечить более устойчивое и экологически безопасное освоение нерудных ресурсов.

2.Инструментальные исследования выбросов по фракционному составу пыли, осуществленные с помощью гравиметрических методов, выявили количественное распределение частиц по их размеру. В результате проведенных исследований установлено, что частицы размером более 10 мкм составляют 62,5% от общего объема выбрасываемой пыли. Данная фракция, как правило, включает в себя более крупные частицы, которые могут оседать на поверхности и в значительной степени влиять на качество воздуха в пределах зоны выбросов. Кроме того, было установлено, что одна треть (то есть 37,5%) выделяемой пыли относится к частицам размером менее 10 мкм, из которых в свою очередь значительная доля составляет частицы размером менее 2,5 мкм. Эти более

мелкие частицы представляют собой особую опасность для здоровья человека, так как способны проникать глубже в дыхательные пути и вызывать различные заболевания. Результаты гравиметрических исследований подчеркивают важность мониторинга как крупнофракционных, так и мелкофракционных частиц пыли для оценки их воздействия на окружающую среду и здоровье населения.

3.Анализ технологий обеспыливания воздушной среды продемонстрировал высокую эффективность применения винил-акрилового способа, который может быть рекомендован в качестве самостоятельного метода для обеспечения чистоты воздуха в южном регионе Кыргызстана, особенно в контексте освоения нерудных полезных ископаемых. Данный метод характеризуется способностью эффективно устранять частицы пыли, что особенно актуально в условиях, где осуществляется активная горнодобывающая деятельность. При этом следует учитывать, что эффективность винилакрилового способа обеспыливания варьируется в зависимости от ряда факторов, включая физико-химические характеристики загрязняющих веществ, размеры частиц, а также специфические климатические условия региона. Физико-химические параметры, такие как состав и агрегация частиц, могут существенно влиять на процесс их осаждения и удаления из воздушной среды. Размер частиц, в свою очередь, определяет их способность к аэрозольному распространению и оседанию, что также необходимо учитывать проектировании систем обеспыливания.

4.Климатические условия, такие как температура, влажность и скорость ветра, оказывают значительное влияние на эффективность работы систем очистки воздуха. Дополнительно, анализ существующих методов разработки месторождений полезных ископаемых показал наличие пробелов в индивидуальных подходах к оценке степени влияния данной деятельности на окружающую среду. Отсутствие стандартизированных и адаптированных методик для оценки экологических последствий разработки нерудных полезных

ископаемых затрудняет формирование обоснованных мер по минимизации негативных воздействий. Это подчеркивает необходимость разработки новых методологических подходов, направленных на интеграцию экологических оценок в процесс планирования и осуществления горных работ, что позволит существенно повысить уровень экологической ответственности в данной сфере.

Личный вклад соискателя. Автор провел теоретический анализ существующих разработок в области освоении основных нерудных материалов, принимал участие в полевых исследованиях по сбору материалов, отбору проб для выбросов, участвовал в лабораторных анализах этих образцов, провел описание примененных методик исследования, обосновал предлагаемые методы по снижению выбросов от источников выбросов, апробировал результаты исследования на различных научно-практических конференциях местного, республиканского и международного значения.

Апробация результатов диссертации. Результаты работы были обсуждены и доложены на республиканских и международных научно-практических конференциях: ОшГУ, 2018; ОшКУМУ, 2022,2023; Наука, новые технологии и инновации Кыргызстана, 2023; ОшТУ, 2023; Central Asian Journal Of The geographical Researchers, ЧГПУ 2023; Международная научно-практическая конференция КубГУ, 2024 и др.

Полнота отражения результатов диссертации в публикациях. По теме диссертации опубликовано 15 научных статей, из них 9 опубликованы в изданиях включенных в РИНЦ, 4 из них с ненулевым импакт-фактором рекомендуемых и вошедщих в перечень НАК при Президенте КР, 1 статья опубликована в журналах Scopus и 3 статьи опубликованы в изданиях РФ и др. стран.

Структура и объем диссертации. Диссертация состоит из введения, 4 глав, заключения и практических рекомендаций и списка литературы. Общий объем работы составляет 163 страниц, с 17 рисунками, 25 таблицами и 5 картами.

Работа выполнена на кафедре геологии полезных ископаемых Ошского технологического университета имени М.М.Адышева под руководством доктора географических наук, профессора Чодураева Темирбека Макешовича, которому автор приносит искреннюю благодарность за оказанную профессиональную помощь и содействие в подготовке диссертации.

ГЛАВА 1. ОБЗОР НАУЧНОЙ ЛИТЕРАТУРЫ

1.1. Степень изученности проблемы в области освоения нерудных материалов

Общеизвестно, что освоение нерудных материалов служат основой экономического роста любого государства. Устойчивый экономический рост зависит от комплекса факторов, зависящих от уровня развития горнорудных компаний, степени развития строительной индустрии, принятых мер по охране окружающей среды и рационального природопользования.

Перечисленные отрасли претерпели разные условия существования, но в последние годы наблюдается их резкий темп роста, которая связано с потребностью населения в нерудных материалах, в частности для возведения различных видов зданий и сооружений.

Как отмечается во многих научных исследованиях, последствиями перечисленных видов деятельности является изменение поверхностного слоя Земной коры, сопутствующими загрязнениями абиотических компонентов таких как атмосферный слой, водные ресурсы (реки, озера, ледники), ухудшение экологического состояния прибрежных территорий [93;17; 19; 21; 23; 36].

Большая часть нерудного сырья добывается открытым способом. В то же время рекультивация террасных сельскохозяйственных угодий под карьеры остается единственным действенным ограничением. Такой метод борьбы за сохранение экологического состояния региона вряд ли можно назвать эффективным [109].

Традиционные способы добычи минерального сырья и ее обогащение характеризуются большим объемом отходов производства, занимающих, как правило, значительные территории, остающиеся длительное время источником загрязнения и разрушения окружающей природной среды. В условиях гористого рельефа проблема обостряется из-за ограниченности и замкнутости пространства [96].

Опытами доказано, что основными видами воздействия открытой разработки месторождений общераспространенных полезных ископаемых являются непосредственное разрушение природных экосистем на локальных участках горного отвода. За пределами горных отводов основное воздействие оказывают выбросы пыли и загрязняющих веществ от промышленных взрывчатых веществ, двигателей дорожно-строительной техники и взрывов транспортных средств в санитарно-защитной зоне горных работ. Выявлены риски загрязнения и изменения химического состава подземных вод в районе добычи полезных ископаемых от эффективной поверхности и площади стока до локальных сбросных сооружений [43].

Современные реалии указывают на недостаточность экономического эффекта деятельности горнодобывающей промышленности в обеспечении устойчивого развития региона (рис. 1.1). Это связано с тем, что принципы устойчивого развития гласят, что экологический мир региона создаст условия для хорошей жизнедеятельности общества. Открытая добыча коренным образом изменяет наиболее устойчивую литогенную основу геосистемы, почвенный слой и естественный растительный слой, изменяет гидрогеологические условия территории, загрязняет атмосферный воздух и наносит вред условиям жизни местного животного мира. Поэтому открытая добыча полезных ископаемых, несомненно, окажет большое негативное влияние на все компоненты природы.

Рисунок 1.1 – Распределение платежей компаний по разработке нерудных материалов*

Согласно рис. 1.1 среди недропользователей по разработке нерудных месторождений 9 компаний не преодолели порог в 10 тыс. сомов, а количество компаний, преодолевших порог в 1 млн сомов составило 24 и ими выплачено 159 480 549 сомов.

Из 156 компаний, имеющих лицензии на разработку месторождений строительных материалов (песок, глины, песчано-гравийные смеси), 50 компаний преодолели порог существенности в 1 млн сомов и выплатили в общей сложности 855 673 732 сома, в том числе больше всего налогов и платежей приходится на ОсОО «Южно-Кыргызский цемент» —457 092 279 сом (рис. 1.2).

В то же время около 30% недропользователей в этой категории не преодолели порог в 100 тыс. сомов — 37 компаний и не преодолели порог в 10 тыс. сомов — 14 компаний.

Рисунок 1.2 – Распределение платежей копнаний по разработке строительных материалов*

^{*}Источник: Инициатива прозрачности добывающей отрасли (ИПДО) в КР, 2023

^{*}Источник: Инициатива прозрачности добывающей отрасли (ИПДО) в КР, 2023

В настоящее время наукой разработан ряд методов изучения воздействия добычи полезных ископаемых на природную среду.

Некоторые ученые отмечают, что при геоэкологическом изучении воздействия добычи полезных ископаемых на окружающую среду в основном используются 2 метода. В этом направлении экологическая экспертиза территории, а точнее, открытая добыча полезных ископаемых, выступает одним из обязательных критериев в комплексной экологической оценке территории. Эти вопросы хорошо и всесторонне отражены в научных трудах таких известных ученых [52; 17; 10].

Еще одним критерием проведения комплексной экологической оценки территории является совокупность данных о способе, виде и масштабах добычи полезных ископаемых. Кроме того, необходимо учитывать уровень антропогенной нагрузки в месте добычи полезных ископаемых.

Следующее направление специализации включает инженерногеологические последствия открытой добычи полезных ископаемых [51; 95].

Инженерно-сельскохозяйственное воздействие характеризуется строительством карьеров, созданием выемок, изменением режима подземных вод. Строительство и расширение дополнительных дорог для транспорта, строительство дополнительных строительных сооружений для создания условий проживания работающих на них граждан не увеличивает разнообразие и количество ущерба окружающей среде, а инженерно-геологические процессы и явления – это различные деформации бортов карьеров, неблагоприятные геологические процессы, активизировавшиеся экзогенные открытой разработки месторождений (оползни, дефляция, эрозионные процессы и др.) и изменения ландшафтной структуры территории. Кроме того, ущерб животному растительному миру этой территории требует точной экологической оценки.

Принимая во внимание многообразие геоэкологических процессов, возникающих в результате открытой разработки полезных ископаемых, они

также подчеркнули необходимость классификации горнопромышленных факторов, влияющих на окружающую среду открытой добычи полезных ископаемых [11; 78; 102].

А.Н.Поповым, В.А.Почечун и А.И.Семячковым рассмотрены вопросы формирования качества поверхностных вод, на которое оказывает влияние хозяйственная деятельность через сброс сточных вод, зачастую неочищенных или недостаточно очищенных, рассеянного поступления потока ингредиентов с измененного и загрязненного водосбора, поступления атмосферным переносом. Вопрос улучшения состояния водных объектов может быть решен формированием биогеохимического барьера на пути потока вещества и энергии. Приведены примеры эффективного использования биогеохимических барьеров для защиты водных объектов в горнопромышленных районах [84].

Геоэкологические вопросы и особенности ведения горных работ открытым способом не утратили своей актуальности даже в зарубежных исследованиях. Например, в Великобритании и Австралии часто можно встретить научную литературу, посвященную влиянию на окружающую среду карьеров по добыче угля и минерально-строительного сырья, а в Чехии — базальта [99; 8].

Научные исследования по вопросам рекультивации земель изучены и собраны на достаточном уровне отечественными и зарубежными учеными. Мы считаем целесообразным учитывать экономическую ценность и хозяйственную пользу нового, вновь созданного ландшафта и при этом использовать ландшафтно-экологический принцип. Поэтому мелиоративные работы следует рассматривать не только как деятельность по восстановлению питательного слоя нарушенных земель, но и как рационально-организованную комплексную систему действий по созданию нового локального экологически сбалансированного ландшафта.

Кроме того, большое значение при определении воздействия открытых горных работ на окружающую среду имеет определение устойчивости геосистемы к горным работам.

Однако на сегодняшний день отказаться от использования открытых горных работ для добычи нерудных строительных материалов не представляется возможным. Помимо экономической целесообразности необходимо учитывать и экологическую безопасность технологической цепочки добычи и переработки минерального сырья, которые неизбежно связаны с решением социальных, экономических и природных проблем. Однако следует отметить, что экономическое развитие в отрыве от окружающей среды приводит к опустыниванию земель, а проблема окружающей среды без экономического развития увековечивает бедность и несправедливость [68].

Решением данной проблемы могло бы стать распределение полезных ископаемых для определения их потенциала добычи за счет более экологически безопасных технологий и методов подземной добычи, чем преобладающий метод.

В материалах зарубежных исследователей [112], указан региональный принцип специализации производства строительных материалов с учетом затрат на добычу, переработку и транспортировку. Подчеркивается, что при добыче щебня, песка, гравия важно ориентироваться на территориально расположенные районы потребления, образующие сосредоточенные узлы потребления, поскольку каждое такое учреждение имеет свое экономическое влияние, которое определяется местом расположения, его текущим и потенциальным спросом. Это правило справедливо для большинства нерудных материалов, кроме облицовочного камня, цемента, гипса, минеральной ваты, стекла, где доля транспортировки в себестоимости продукции значительно меньше, чем щебня.

Комплексный анализ разработки общераспространенных полезных ископаемых показал, что разработка месторождений щебня, гравия, песка возможна только открытым способом. Это связано с тем, что глубина залежей составляет 0-15 м, а величина невелика [15].

Однако большую часть месторождений гипса, ангидрита и известняка можно добывать под землей с высокой прибылью. Месторождения, как правило,

осадочные, их глубина колеблется в пределах 50-400 м, при этом природная ценность гипсового сырья выше, чем щебня или песка, а мощность слоев достигает 5-20 м. Такие месторождения можно разрабатывать под землей с относительно низкими производственными затратами. Существуют системы разработки, применение которых позволит получать меньший доход от добычи открытым способом.

При этом следует иметь в виду, что в технологически развитых странах (США, Япония, Франция и др.) доля стоимости природоохранных мероприятий составляет до 30-50% инвестиций, вложенных в строительство объектов промышленности. Что дает нам ориентиры для дальнейшей разработки приоритетов при выборе технологий добычи.

Существует реальная возможность снизить техногенный элемент экологического риска, устранить который можно заменой применяемой технологии, либо частично за счет внесения в технологию дополнительных мероприятий, таких как, например, снижение эксплуатационных потерь полезного ископаемого. [108].

При этом постоянно нужно принимать во внимание, что окружающая среда не есть что-то локальное, обособленное. Это оболочки земной коры, где формируются геохимические поля, постоянно взаимодействующие друг с другом и находящиеся в той или иной мере под влиянием антропогенных факторов. Последние часто работают на фоне развития естественных внешних геологических процессов, усугубляющих экологическую обстановку.

Современные тенденции в мировом сообществе свидетельствуют о том, что качество окружающей среды станет одним из ключевых факторов конкурентоспособности страны, который зависит от его экологического статуса –качества окружающей среды, от состояния которой во многом зависит уровень здоровья населения. В последние годы наметилась четкая тенденция усиления влияния неблагоприятных экологических условий на здоровье и демографическое положение населения нашей страны. Государственное

стимулирование добычи нерудного строительного сырья подземным способом позволит значительно снизить экологическую нагрузку на соответствующие горнодобывающие районы без потери экономической привлекательности района.

Рассматриваемая территория богата нерудными полезными ископаемыми.

В зависимости от происхождения, технических характеристик и областей использования онжом разделить на: строительные материалы, горнодобывающие материалы, химические вещества, сельскохозяйственные руды, драгоценные материалы. Одновременно к этим группам можно отнести целый ряд нерудных полезных ископаемых, что отражает многоцелевой характер ИХ практического использования. Неметаллические полезные ископаемые в их природной или синтетической форме очень важны для экономического и социального развития Кыргызстана. Широко применяется: в гражданском и промышленном строительстве, в сельском хозяйстве, во многих отраслях промышленности, в ювелирном деле.

Строительные материалы являются наиболее широко используемыми видами нерудного сырья. Месторождения строительных материалов осадочного, магматического и метаморфического происхождения.

Строительные и облицовочные месторождения гранита, граносиенита, доломита, мрамора, известняка, известняков-ракушечников и роговиков, обнаруженные на территории южного региона Кыргызстана. Суммарный баланс их запасов по республике составляет 85,6 млн м³. Основные месторождения: Жел-Арыкское, Байбиче-Соору (граносиениты), Кыртабылгинское, Кайындынское, Теректинское (граниты), Ак-Уленское (сиениты), Сары-Ташское (известняк-ракушечник). Потенциал увеличения отложений и разработки новых месторождений для строительных и облицовочных камней велик. Рыхлые и слабосцементированные известняки (песок, смесь песка с гравием и валунами, песчаник, конгломераты) являются основным сырьем, используемым в строительстве в качестве пассивных заполнителей для бетона, силикатного

кирпича и стекольных изделий. Широко используются месторождения песка и гравия. Большая часть их месторождений восстановлена. Общий запас оценивается в 473 млн м³.

Глина и глинистые породы (глина, терракота, лёсс) служат сырьем для изготовления гончарных изделий, строительного кирпича, водосточных труб, напольной керамической плитки, клинкера. Из которых на данной территории изготавливаются кирпичи, фарфор и заборы, также используются для производства легких бетонных смесей (керамзит, аглобурит) и вяжущих. Территория богата месторождениями глины.

Гипсовый камень распространен по всей территории южного региона Кыргызстана. Большинство из них сосредоточено в Ошской и Джалал-Абадской областях. Уточнены и подсчитаны запасы 6 месторождений гипса в объеме 28483 тыс. т. Разрабатываются два резервуара — Чангыр-Ташское и Ноокатское.

Горнорудное сырье состоит из горных пород и минералов, которые используются в естественном виде или перерабатываются как пьезооптические, абразивные, огнеупорные, изоляционные и другие материалы в различных отраслях промышленности. На изучаемой территории месторождениями и условиями сырья для добычи являются горный хрусталь и пьезокристаллы кальцита, месторождения эффузитов для основного состава, корунда и гранита, кварцевого песка, кварцита, известняка, графита.

Горнорудное и химическое сырье используется в небольшом количестве. При наличии заинтересованного потребителя многократно может быть увеличено производство плавикошпатового концентрата, базальтового волокна, добыча каменной соли и производства графита. На базе разведанных месторождений фарфорового камня и волластонита могут быть реализованы проекты создания керамического и фарфоро-фаянсового производства [28].

Сырьем для производства минеральных камней (петрологического сырья) являются в основном базальты и диабазы. Они используются в карьерах и при производстве минеральной ваты. Промышленный интерес представляет хорошо

разведанное месторождение базальтов Сулуу-Терек с запасами 3347 тыс. м³. Многообещающие предметы также являются проявлением Кен-Кол.

Месторождения озокерита известны в Ферганской долине. Среди них перспективны месторождения Риштан и Майлуу-Суу.

В производстве металлов используется огнеупорное и пластичное сырье, такое как нерудные полезные ископаемые. Они представлены серпентинитом, магнезитом, графитом, кварцем, огнеупорной глиной, доломитом, лидитом, андалузитом и др. Разведано только одно Канское месторождение серпентинитов и подсчитаны его запасы на территории республики. Минералы флюорита также широко добываются в южном регионе Кыргызстана. Особенно в Айдаркен и Чаувай сурьмяно-ртутных, Абшырском, Северо-Ак-Ташском сурьмяном и других месторождениях.

Важным видом сырья для добычи полезных ископаемых является фарфоровые камни. В Джалал-Абадской области для промышленного освоения разработано месторождение Учкурт с запасом 9679 тыс. т. Волластонит также является прогрессивным типом керамического сырья, основные ресурсы которой находятся в Джалал-Абадской области.

Абразивное сырье представлена корундом, наждачными, жерновыми, точильными камнями и гранатом. Наиболее перспективным месторождением корунда является месторождение Чаркум-Тоо с ожидаемыми ресурсами в 2,7 тыс. т. Месторождения альмандинового граната (средней твердости) встречаются в метаморфических сланцах, гнейсах и амфиболах.

Пьезооптическое сырье представлено кристаллами кварца (горный хрусталь), кальцита (исландский шпат и оптический гипс), флюорита и турмалина.

К природным минералам-наполнителям, тепло- и электроизоляционным материалам относятся слюда, асбест, тальк, пирофиллит, глина, каолин, трепел и минеральные пигменты. Слюдоносные породы произрастают в метаморфических толщах Туркестанского хребта. Небольшие следы асбеста

прикрепляются к супбазальным породам в районе засева склонах Алайского хребта. Месторождения талька и пирофиллита редки и мало изучены. Большое количество проявлений талька обнаружено в Канской гряде сверхосновных пород. В месторождениях к северу от Шамал-Тал-Казы обнаружены промышленные залежи талька. Песпективными являются месторождения талька в Кулаган-Таш.

Основная масса белых глин, особенно каолинового строения, образуется в виде мелких пластинчатых отложений в угленосных юрских отложениях Сулюктинского, Шурабского, Таш-Кумырского, Кызыл-Кийского и др. районов. Наиболее перспективным является Таш-Комур (Касан-Сай), каолиноподобная глина с запасами 3,2 млн м³. Хорошо дренированные монтмориллонитовые глины приурочены к палеогеновым отложениям на юге республики. Месторождения трепела сосредоточены на месторождении Чангирташ (47 тыс. т). В целом пигментное минеральное сырье мало изучено. Наиболее перспективными материалами являются красная глина, гематит, лимонит и оксиды марганца, железистые бокситы и сланцы. В целом промышленное использование горнорудного сырья в республике еще очень мало.

Химическое сырье на изучаемой территории представлено баритом, бором, самородной серой, сернистым колчеданом, природными минеральными солями и целестином. Предварительно подсчитаны запасы барита (по категории $C_2 - 122,8$ тыс. т). Борная минерализация встречается на рудных полях Чалкуйрук-Акжыл, Гавайском, Бозумчак.

Большой интерес представляет серное месторождение в Чангыр-Ташском районе, содержащее 238,6 тыс. т запасов серы.

Природные минеральные соли являются важным химическим веществом, используемым в республике. Месторождения каменной соли сосредоточены в месторождениях Кетмен-Тобе. Его общие запасы составляют 6315 тыс. т. Каменная соль широко используется в регионе.

Сельскохозяйственные руды представлены апатитами, фосфоритами, гуминовыми углями, глауконитом, торфом и др. гипсовые и карбонатные породы, используемые в агрохимических добавках, используются как минеральные подкормки для кормовой соли и каменного известняка.

Комплексные геологические и научные исследования на южном регионе республики последних лет (2008-2012 г.г.), а также работы, проведенные в 2012-2014 году, в котором автор участвовал, позволили получить предварительные сведения о трех возрастных уровнях фосфоритовых проявлений в южном регионе:

-фосфоритовое оруденение в палеозойских отложениях (Cm-O-S-D).

-остаточно-метасоматический тип фосфоритовых образований коры выветривания юры (J_1) и желваково-ракушечный тип фосфоритов меловых отложений (K_3) , в мезозое - (Mz).

-зернистый, желваково-зернистый тип фосфоритов кайнозоя (Кz).

Перспективы сырьевой базы фосфоритов могут рассматриваться в связи с выше выделенными возрастными генетическими группами. На рассматриваемой территории были уточнены рудопроявления Абшир, Сары-Булак, Чурбек, Ташбулак и др. [3; 4].

Основными задачами при производстве фосфоросодержащих удобрений являются увеличение объемов производства, расширение ассортимента и снижение стоимости производимых фосфорных удобрений [115].

Реальное обнаружение промышленных скоплений фосфоритов можно ожидать в палеогене. По всей мощности мезокайназойской толщи южного региона идет накопления P_2O_5 с предварительными запасами в сотни млн т.

В состав сырья драгоценных камней входят многие минералы и горные породы, обладающие природной декоративностью, красотой, прочностью и редкостью. Они используются в качестве ювелирных, ювелирно-поделочных и поделочных украшений. К таковым относятся аметист, альмандин, сапфир, рудно-зеленый диопсид хрома, ярко-зеленая гроссуляра, циркон, андалузит и т.д.

Весьма перспективны изумрудно-зеленые хромовые диопсиды — Тенгизбайское, благородные корунды (рубин) — в бассейне реки Ормизан и Кок-Белес в бассейне реки Сох.

Среди ювелирно-декоративных камней горный хрусталь, халцедон, морион, опал, нефрит, родонит, радужный полевой шпат, жадеит, родингит и др.

Поделочные камни представлены агатом, яшмой, кремнием, серпентинитом, роговиками и др. Перспективными являются месторождения оникса Уулу-Тоо в Ноокатском районе (месторождения оникса – 94 т), Ходжагаир (месторождения оникса - 116 т), декоративных роговиков - Кумуштак (Читанди) и 13 тыс. т месторождений роговиков.

Значение добычи нерудных месторождений в экономике страны велико. Так, в 2020 году объем добычи нерудных полезных ископаемых в хозяйстве Кыргызстана составил 620,5 млн сомов (табл. 1.1).

Таблица 1.1 — Объем добычи нерудных месторождений (млн сом)*

	2016	2017	2018	2019	2020
Добыча нерудных	624,7	612,1	675,7	758,6	620,5
месторождений					

^{*}Источник: Промышленность КР. Статистический сборник. –Б.: Нацстатком, 2023. -97 с.

А объем добычи нерудных месторождений на исследуемой территории составил 337754,6 тыс. сомов, что составило 54,46% от общереспубликанского объема добычи нерудных месторождений (табл. 1.2).

Таблица 1.2 – Объем добычи нерудных месторождений (тыс. сомов)*

	2016	2017	2018	2019	2020
Баткенская область	9 720,1	21 263,8	8 715,4	30 789,3	23 884,5
Жалал-Абадская	36 344,6	30 853,6	24 779,7	47 354,0	59 788,9
область					
Ошская область	201 006,5	179 111,7	208 474,6	294 677,2	253 019,2

г. Ош	-	-	1180,0	552,4	1062,0
Всего	247 071,2	231 229,1	243 149,7	373 372,9	337 754,6

*Источник: Промышленность КР. Статистический сборник. –Б.: Нацстатком, 2023. -97 с.

Кроме того, еще одна ключевая проблема заключается в рациональном использовании запасов нерудных полезных ископаемых. В частности, в настоящее время особое внимание уделяется изучению традиционной формы природопользования и устойчивости человечества к условиям различных природных сред (и даже самой суровой природы северных регионов), культурнохозяйственной адаптации к условиям природных ландшафтов как исторического опыта. Кроме того, создается и реализуется классификационная система природопользования, методы картографирования природопользования [25]. Современный этап развития рационального природопользования как науки характеризуется активным развитием его теоретического положения. Он обязательно потребности стимулирует практические переходе рациональному природопользованию с целью территориальной оптимизации и обеспечения устойчивого развития [27].

1.2. Природные условия формирования и освоения нерудных материалов в научной литературе

Природные богатства южного региона с древних времен привлекали внимание ученых. В конце XIX в. геологические исследования проводили видные русские ученые П.П.Семенов-Тян-Шанский, Н.А.Северцев, А.М.Федченко, И.В.Мушкетов и др. Рассматриваемый регион известна месторождениями топливных ресурсов (уголь, нефть и газ), цветных и редких металлов (сурьма, ртуть, свинец, цинк, марганец и др.).

Кроме того, он богат месторождениями цветных и поделочных камней (мрамор, гранит, сиенит, гипс, лиственит и др.). Корунд, гранат, аметист, горный

хрусталь, яшма, нефрит, халцедон, сапфир, циркон, агат, опал, андалузит и др. широко используются в ювелирном деле как цветные камни найден.

Климатические условия являются главными факторами формирования рельефа местности, развития ландшафта, биоразнообразия и жизнедеятельности людей.

Солнечная радиация является важным фактором формирования этих показателей, его контакт с поверхностью Земли зависит от высоты Солнца. По данным метеостанции Сары-Челек высота Солнца в полдень составляет от 25⁰ в декабре, до 70⁰ в июне. Среднегодовая продолжительность солнечного сияния в регионе составляет 2800 часов. В условиях Кыргызстана количество дней без солнца в году составляет 80-100 дней. А количество без солнечных дней в июле всего 2-3 дня. Количество безсолнечных дней в январе немного больше — 10-12 [50].

Режим ультрафиолетового излучения определяется биологической активностью Солнца, а ультрафиолетовое излучение определяется высотой Солнца над горизонтом в зависимости от географической широты места.

Атмосферная циркуляция. В зимние месяцы изучаемая территория находится под влиянием сибирского антициклона, погода в основном ясная, иногда туманная. Возмущения погоды в основном обусловлены воздушными волнами холодных воздушных масс, а также южными циклонами, а иногда и холодными воздушными массами, дующими с севера, северо-запада и запада. Весной повторяющиеся явления по фронту усиливаются, преобладают дождливые и туманные дни. Летом наблюдается медленноградиентное барополе, усиливаются периодические явления по фронту (особенно высотный малоподвижный циклон). Но холодная воздушная масса может резко изменить погоду в результате трансформационных процессов. Осенью повторяемость слабоградиентного поля невелика (до 30-40%), часты антициклонические условия, редко дует холодный воздух, но из-за его влияния погода становится холоднее и дуют сильные ветры. Ветер днем меняет направление, ночью дует с

гор в долину, а днем из долины в горы (горно-долинный ветер). Среднемесячная скорость ветра 1,5-3,0 м/с. Атмосферное давление колеблется от 930 гПа в предгорьях до 600-550 гПа (или от 700 до 400 мм рт. ст.) в высокогорьях.

Температурные условия региона разные, здесь хорошо видна вертикальная поясность. Самый жаркий месяц лета — июль, средняя температура на высоте $1000 \text{ м} - 25\text{-}27^{\circ}\text{C}$, на высоте $1000\text{-}1400 \text{ м} - 22\text{-}25^{\circ}\text{C}$, на высоте $1400\text{-}1800 \text{ м} - 20\text{-}22^{\circ}\text{C}$, $15\text{-}20^{\circ}\text{C}$, на высоте $1800\text{-}2400 \text{ м} - 10\text{-}15^{\circ}\text{C}$, а в горной местности на высоте $3100\text{-}3800 \text{ м} - 5\text{-}10^{\circ}\text{C}$. Абсолютный максимум температуры южной части республики достигает 43°C в нижних зонах -27°C , а в северной части области — в бассейне Кетмень-Тобе на высоте 800 м температура воздуха несколько ниже, средняя температура июля $23\text{-}24^{\circ}\text{C}$.

Осадки выпадают не везде равномерно, в горных районах их больше, чем на равнинах и долинах. Количество осадков зависит от высоты. Наибольшее количество осадков выпадает на западном и юго-западном склонах Ферганского хребта. В этих местах выпадает 400-500 мм осадков. С увеличением высоты увеличивается количество осадков, выпадающих на открытые поверхности (в среднем 50 мм на 100 м), а на высоте 1700 м их годовая сумма достигает 900 мм.

В летнее время добыче полезных ископаемых препятствует не количество дождей, а их частота. Количество дождливых дней в году колеблется от 80 до 120 дней, а максимальное количество осадков за сутки достигает 90-100 мм.

Зимой на распространение холодного воздуха большое влияние оказывает форма рельефа: на склонах Ферганской долины средняя температура января колеблется от -3^{0} C до -10^{0} C, а в прибагровых долинах и котловинах она понижается. от -14^{0} C до -17^{0} C. На склонах Ферганской долины абсолютный минимум температуры воздуха установлен между -26^{0} C и -34^{0} C, а в тупиковых долинах и котловинах (Кетмен-Тобе, Чаткал, Алайку и Алай) $-40-44^{0}$ C [2].

Самый холодный месяц зимнего сезона — январь, средняя температура которого колеблется от $-13,9^{\circ}$ С на севере до $-3,4^{\circ}$ С на юге. На холодное время года приходится 50-60% годовой суммы осадков. Только в нижней зоне

Чаткальской долины и Ферганского хребта зимой выпадает 35-45% годовой суммы осадков [63].

Безморозный период длится в среднем 170-180 дней. В условиях региона снежный покров неустойчив. Из-за малого количества осадков и теплой зимы в юго-западных долинах снежный покров незначителен. В среднегорных и горных поясах, окружающих южную сторону Ферганской долины, она может быть менее 20 см (табл. 1.3).

Таблица 1.3 – Толщина снега в южном регионе Кыргызстана, см*

Станциялар	8	9	10	11	12	1	2	3	4	5	6	7
Айдаркен	-	-	-	5	10	20	27	22	-	-	-	-
Ош	-	-	-	-	3	8	10	3	-	-	-	-
Ак-Терек-Каба	-	-	-	8	24	45	57	44	12	-	-	-

^{*}Источник: Научно-прикладной справочник по климату СССР. Серия 3, многолетние данные. Часть 1-6, выпуск 32. Киргизская ССР. Гидрометиздат Ленинград, 1989г. -176 стр.

Со 2-й декады декабря на склонах хребтов, окружающих Ферганскую долину, снег держится 2 месяца в нижнем поясе и 3-4 месяца на высоте до 2000 м. В горной зоне снежный покров появляется с ноября и держится 5-6 месяцев.

Толщина снежного покрова в нижней зоне 10-20 см, на высоте 1000-2000 м 30-40 см, выше 2000 м 60-70 см. Чаткальская долина — самое снежное место изучаемой территории. Слой снега толщиной 60-100 см лежит здесь 4-5 месяцев [2].

Необходимо учитывать климатические особенности территории, что является одним из важнейших условий ведения горных работ. Это связано с тем, что они определяют сезонность горных работ. Он также определяет уровень распространения загрязняющих веществ в атмосфере и перемещение вредных веществ по господствующему направлению ветра.

Тянь-Шань – крупное относительно высотное горное сооружение, состоящее в основном из тектонических поднятий (хребтов) и тектонических

складок (долин). Горы района по своему орографическому членению связаны с Западным (Ферганский, Пскемский, Чаткальский, Кураминский и др.) и Южным Тянь-Шаном (Алайский, Туркестанский и др.).

Памиро-Алайская орографическая область относится к Памирской горной структуре и включает северный склон Чон-Алайского хребта и Алайскую долину на территории Кыргызстана.

Ферганский хребет отделяет Ферганскую долину от Ала-Буки, Тогуз-Торо и других небольших долин на нарынской стороне. Структурно это западная граница Внутреннего Тянь-Шаня. Высочайшая вершина Уч-Сейит на стыке горы Торугарт с Алайским хребтом достигает высоты 4940 м. Ферганский горный массив является важнейшей природной границей: это не только орографическая, но и климатическая, гидрологическая и ландшафтная граница, разделяющая Ортонку-Нарынскую и Ферганскую долины. Его северо-восточный склон короткий и круто пологий, а юго-западный — пологий и постепенно переходит в равнины Ферганской долины.

Чаткальский горный массив окружает Ферганскую долину с севера и простирается от озера Сары-Челек до долины Гава-Сай на территории Кыргызстана. Его общая протяженность составляет 225 км на юго-восток. 165 км из которых в пределах Кыргызстана. Самая высокая вершина Чаткальского хребта – гора Авлетин, высотой 4503 м.

Алайско-Туркстанская орографическая область окружает Ферганскую долину с юга и простирается от бассейна реки Тар к западу от бассейна Ак-Су. Гора Чон-Алай протянулась на 2500 км в широтном направлении, и через нее проходит граница Кыргызстана и Таджикистана. Средняя высота 5500 м, высшая точка 7134 м (пик Ленина).

Алайский хребет начинается от хребта Адышева на востоке и простирается на 350 км на запад. Его главная ось расходится на запад несколькими ответвлениями, образуя небольшие отдельные хребты. Их абсолютная высота увеличивается далее к западу. Алайский хребет заканчивается в котловине

Сохтун. Орографическая структура наиболее сложная. Самая высокая вершина – Тамдыкуль (5539 м).

Длина Туркестанского хребта на территории Кыргызстана составляет 150 км (южная сторона обращена к Таджикистану). Средняя высота 4300-4400 м. Самая высокая вершина — Скалистая гора (5621 м). Северные предгорья примыкают к равнинам Ферганской долины.

Комплекс равнин и долин у подножия гор в основном делится на широкие котловины и межгорные долины. Этот комплекс состоит из предгорных (5-10 м) вод, стекающих с горных склонов, невысоких склонов, равнин с примесью мелкого песка и глины. Общее количество речных пород в Ферганской долине достигает 6, каждая из них тесно связана с этапами оледенения и опускания в тянь-шанском четвертичном периоде, а также с засушливым и гумидным этапами климата.

Комплекс предгорий и холмов в основном расположен между хребтами и аккумулятивными равнинами. Их самые большие площади — это холмы и долины, окружающие Ферганскую долину. Рельеф этих форм сложный: холмы, склоны, хребты, долины с узкими ущельями, остатки водных скал. Рельеф сложен рыхлыми породами и отложениями мезозойской и кайнозойской эр, а глубина эрозионных складок в горах и долинах достигает 200-500 м. В предгорьях гор распространены типы местности равнинные (бесплодные земли), наклонные к водным долинам, совместимые с холмами.

Комплекс высоких гор занимает большую часть территории. Он в основном состоит из исключительно кристаллических пород палеозойского и более древнего возрастов. Рельеф этого комплекса сформирован поднятием гор в результате новейших тектонических движений, и преобладают в основном тектоно-денудационные типы. В зависимости от разной скорости тектонических движений, уровня денудационной деструкции и глубины эрозионных складок формировался горный рельеф разной гипсометрической высоты и формы.

В комплексе высокогорья встречается много типов и форм рельефа, таких как открытые, плоские, ямообразные долины, плоские скалы, узкие ущелья, скалистые горные склоны. Глубина эрозии на горных склонах достигает 2000 м. Есть средневысотные и высокие горы, сложенные из горных пород, образовавшихся в мезозойскую эру. К таким горам относятся Алайский, Туркестанский и Чон-Алайский хребты, расположенные на юге Ферганской долины.

Одними из современных экзогенных ландшафтообразующих факторов региона являются эрозионные, оползневые процессы, заболачивание, карстовые и техногенные процессы. При разработке месторождений фосфоритов и горных работах в целом необходимо учитывать это положение и детально изучать геологические и гидрогеологические условия территории.

Геологическое строение территории очень сложное. Его уникальной особенностью является наличие двух крупных комплексов горных пород, образующих домезозойский и мезозойский структурные слои. Первый сложен мощными пластами осадочных, магматических, метаморфизованных, преимущественно континентальных осадочных терригенных толщ различных фаций, подвергшихся сильным деформациям с очень сложным внутренним строением. Породы нижнего комплекса слагают многие горные хребты Тянь-Шаня, а мезокайнозойские отложения заполняют межгорные долины. Ферганский и Чон-Алайский хребты сложены в основном породами более высокого комплекса [59].

В соответствии с ГОСТ 17.2.3.02-78 основными критериями качества атмосферного воздуха при установлении ПДВ для источников загрязнения атмосферы являются ПДК, утвержденные Министерством здравоохранения Кыргызской Республики. При этом требуется выполнение соотношения С/ПДК<1, где С – расчетная концентрация вредного вещества в при земном слое воздуха, в мг/м³. На каждом объекте исследования в зонах выброса загрязняющих веществ установлены определенные марки вентиляторов, с

известной производительностью м³/час, зная это мы можем определить выброс загрязняющих веществ за месяц, год, используя методику измерения скорости и объема газов в газоходе [55].

Гидрогеологические режимы играют важную роль в открытой добыче полезных ископаемых. Это связано с тем, что в зависимости от изменения гидрогеологических условий территории определяется глубина разработки карьеров, а также направления последующей рекультивации нарушенных участков. Например, сельскохозяйственное направление мелиорации требует, чтобы уровень грунтовых вод не превышал 0,5 м над поверхностью, а лесохозяйственное направление – не более 2 м.

Основным документом, регламентирующим расчет рассеивания и определения приземных концентраций выбросов, промышленных предприятий является «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД -86». В основу методики положено условие, при котором суммарная концентрация каждого вредного вещества, не должна превышать максимальную разовую предельно допустимую концентрацию, данного вредного вещества в атмосферном воздухе, т.е.:

$$C_{\Sigma}=(C_m+C_{\phi}) \leq \Pi \coprod K,$$
 (1.1)

где, C_m — максимальная концентрация загрязняющих веществ в приземном воздухе, создаваемая источниками выбросов, мг/м 3 ;

 C_{φ} -фоновая концентрация одинаковых или однонаправленных вредных веществ, характерная для данной местности (принимается по справке органов санитарно-эпидемиологической службы), мг/м³;

Зная объем выбросов V, суммарную денежную оценку экономического ущерба можно рассчитать по формуле:

$$P = f1(V) + f2(V) + f3(V) + ... + fn(V);$$
(1.2)

где Р – денежная оценка ущерба;

fn (V) - величина ущерба (потерь), возникающая в n-ой сфере деятельности от ухудшения качества окружающей среды вследствие выбросов.

Заключение по главе 1

Проведенный анализ по обзору существующих научных работ в области разработки нерудных материалов южного региона Кыргызстана показало, что данная проблема еще до конца не изучена, и данное обстоятельство требует комплексного рассмотрения этой проблемы.

Изучение освоенности нерудных материалов показало, что рассматриваемый регион Кыргызстана обладает значительными ресурсами, и их развитие предполагает принятие во внимание экологических аспектов природопользования.

Природные условия региона являются определяющими для формирования изучаемых материалов, разработка которых пропорционально зависит от способа их разработки и отражается на состоянии окружающей среды и биотических компонентах данной территории.

Географические условия являются главным фактором выбора технологии разработки нерудных месторождений, служат условием распространения выбросов в окружающей среды и основой выбора экологических решений по снижению выброса.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Материалы исследования

Отсутствие единого, точного определения геоэкологических вопросов, на наш взгляд, связано со сложным смысловым содержанием данного понятия (оно включает в себя две составляющие: географическую и экологическую) и теоретико-методологическими сложностями в самой эколого-географической науке (до сегодняшнего дня идут споры о родовой принадлежности геоэкологии, не сформировалось четкого и общепринятого представления о ее объекте и предмете). Это, в свою очередь, затрудняет очерчивание объема понятия «эколого-географическое положение» и конкретизацию его содержания. По этим причинам анализу эколого-географического положения географических объектов посвящено сравнительно небольшое количество публикаций.

Основополагающими в данной области исследования можно считать работы М.Е.Певзнера [80; 79; 81], в которых специально разрабатывается представление об эколого-географическом положении объектов. Соседствующие территории рассматриваются при этом как факторы экологического воздействия и экологического риска.

Проведенный анализ по изучению нерудных материалов предполагают предоставить их как осадочные породы, добыча которых осуществляется в карьерах, открытым способом. Нерудные материалы в своей основе состоят из первичных и вторичных горных пород, имеющих осадочное и вулканическое происхождение. Их еще называют инертными материалами, что характеризует длительность образования в процессе взаимодействия породы с внешней средой на протяжении тысяч лет [30; 15].

Длительное время дифференциальный термический анализ (ДТА) применялся в основном как аналитический метод для идентификации и изучения отдельных фаз при нагревании и служил дополнением к методам структурного

анализа. Однако, в ряде случаев, особенно при исследовании тонкодисперсных минералов, которые в большинстве своем присутствуют в зоне гипергенеза, именно с помощью синхронного термического анализа (СТА) можно получить больше информации о фазовом составе исследуемых веществ, чем любым другим методом [92].

За рубежом также многие исследователи уделяли методу термического анализа немалое внимание. В монографии Л.Г.Берга проанализирована практически вся литература по термическому анализу, вышедшая к тому времени [14]. Под редакцией Р.Маккензи выпущен сборник, в котором обобщены материалы по истории, методике, технике, термоаналитическим характеристикам минералов и органических веществ [116]. Большое количество статей посвящено изучению отдельных минералов при нагревании. Много работ посвящено исследованию методом термического анализа глинистых минералов.

Т.Н.Фурманова и ее соавторы отмечали следующие 2 вида воздействия открытых горных работ на природную среду: инженерно-экономическое воздействие и инженерно-геологические процессы и явления.

Технологии, используемые в освоении нерудных строительных материалов, включают добычу минерального сырья, его механическую обработку или обогащение. Промышленность нерудных строительных материалов объединяет предприятия, производящие (добывающие) в качестве основной продукции щебень, гравий, песок, песчано-гравийную смесь. Добыча нерудных материалов осуществляется в карьерах открытым способом из неглубоко залегающих пластов горных пород. Основными элементами карьеров являются траншеи, уступы и отвалы [103].

Нерудные горные породы, как правило, залегают под слоем пустой породы толщиной от 1 м до нескольких метров. Глубина карьеров обычно 15-20 м, в отдельных случаях 80-100 м. Разработка участка недр предусматривается в два этапа — проведение вскрышных работ; выемка песчанно-гравийных смесей (ПГС) до отметки 0,5-1 м выше уровня воды.

На карьерах предприятий по добыче ПГС эксплуатируются экскаваторы, грузовые автомобили, погрузчики, автоманипуляторы, а также дробильно сортировочные линии, которые не только помогают освоению этих ресурсов, но и в какой-то степени являются источниками вредных веществ на окружающую среду.

Освоение добываемых горных пород предусматривает их дробление, грохочение, гидравлическую классификацию, промывку, обезвоживание, обогащение, складирование и отгрузку продукции потребителю. Перечисленные процессы отнесены к факторам воздействия на литосферу, атмосферу и биосферу в целом [6].

В процессе дробления горных пород в целях получения щебня и песка нужных фракций, в зависимости от их физико-механических свойств (прочности, наличия слабых включений, кусков плитняковой формы и т. д.), выделяются неорганическая пыль при дроблении в щековых, конусных дробилках.

Существующие дробилки не позволяют измельчить материал до требуемого размера за один проход камня через дробилку, поэтому его дробят в несколько стадий на последовательно расположенных дробилках.

Во многих странах установлен определенный порядок по инвентаризации выбросов от источников, которые регламентируют состояние источников выбросов на окружающую среду. В целом данный порядок закрепляется в «Инструкции по инвентаризации выбросов вредных веществ в атмосферу», согласно которой, основной целью инвентаризации является получение исходных данных для:

- оценки степени влияния выбросов вредных веществ предприятия на окружающую среду (атмосферный воздух);
- установления предельно допустимых норм выбросов вредных веществ в атмосферу как в целом по предприятию, так и по отдельным источникам загрязнения атмосферы;

- организации контроля соблюдения установленных норм выбросов вредных веществ в атмосферу;
 - оценки состояния пылегазоочистного оборудования предприятия;
- оценки экологических характеристик используемых на предприятиях технологий;
- оценки эффективности использования сырьевых ресурсов и утилизации отходов на предприятии;
 - планирования воздухоохранных работ на предприятии.

На основании анализа научных работ ученых, посвященных вопросам недропользования и рекультивации нарушенных грунтов, и на основании рассмотрения ряда нормативных документов мы разделили все факторы, определяющие устойчивость геосистемы при проведении горных работ на 2 группы (табл. 2.1).

Таблица 2.1 — Факторы, определяющие устойчивость геосистемы к горным работам*

Факторы			
Природные	Природно-антропогенные		
Геологические	Эрозия почвы		
Гидрогеологикие			
Геоморфологические			
Климатические	Структура экологического каркаса		
Эдафические	(антропогенная структура геосистемы)		
Биотические			

^{*}Источник: составлена автором

В 1-ю естественную группу факторов, определяющих устойчивость геосистемы для горных работ, мы включили следующие факторы:

- 1. Геологический фактор определяющий прочность горных пород и их устойчивость к механическим воздействиям. Основным критерием является тип горных пород, слагающих изучаемую территорию и демонстрирующих вертикальную связь в геосистеме.
- 2. Геоморфологический фактор воздействующих на интенсивность экзогенных процессов, кроме того, он участвует в механическом, физическом и геохимическом круговороте веществ. А критерием служит угол наклона поверхности территории. При этом доминирующую величину уклона поверхности изучаемой территории автор получил с помощью топографической карты масштаба 1:200 000.
- 3. Гидрогеологический фактор учитывающий глубину карьеров и выемок определяется с учетом гидрогеологических условий. Критерием является глубина залегания грунтовых вод. Его значение можно увидеть в атласе Кыргызской Республики [9].
- 4. Климатический фактор влияющий на растительный покров, биопродуктивность, интенсивность водной эрозии и формирование эоловых процессов. Гидротермический коэффициент рассчитывается как интегральный критерий. Их значения также приведены в Атласе Кыргызской Республики [9].
- 5. Эдафический фактор характеризующий механические и химические свойства почвы. Также вместе с климатическими условиями влияет на скорость восстановления растительности. Критерием является система гумуса в почве. Данные об их значении приведены в Атласе Кыргызской Республики [9].
- 6. Биотический фактор критерием является первичная биологическая продуктивность геосистемы. Это важнейший параметр для жизни экосистемы, так как он определяет способность восстанавливаться в минимальное время после антропогенного воздействия. Значение биотического фактора подробно изложено в работе В. Д. Утехина «Первичная биологическая продуктивность лесостепных экосистем» [100].

В группу природно-антропогенного воздействия вошли следующие факторы:

- Степень эрозии почвы характеризующий потерю почвой питательных веществ, что, в свою очередь, влияет на скорость регенерации растительности.
 Критерий степень повреждения почвы.
- 2. Экологический каркас территории или сочетание природного и антропогенного ареалов, например, по мнению русского ученого К.И.Лопатина, характеризует ее функциональную структуру и отражает уровень антропогенной нагрузки [51].

В своих работах российские ученые В.П.Князева, В.Г.Микульский и П.М.Жук предложили экологическую оценку по основным этапам жизненного цикла различных строительных материалов, которая представлена в табл. 2.2 [41; 94; 31]. По мнению этих исследователей, каждый экологический фактор оказывает негативное воздействие на биосферу и может быть оценен в баллах от 1 до 3:

- -максимальное негативное воздействие 3 балла;
- -средний уровень негативного воздействия 2 балла;
- -минимальное негативное воздействие –1 балл.

Таблица 2.2 — Экологическая оценка нагрузок по этапам жизненного цикла материалов *

Виды	Негативные эффекты воздействия строительных материалов по				оценка		
строительных	этапам жизненного цикла						
материалов	Поврежде Дефицит Выбросы Энерг Здоровье Отходы				Сумма		
	ние	сырья		ия	человека		баллов
	экосистем						
Древесные	1	1	1	1	1	1	6
материалы							
Природный	3	2	1	2	1	1	10
камень							

материалы 3 1 2 3 1 1 1 стеклянные и др. минеральные расплавы	11
теклянные и др. минеральные	11
др. минеральные	
минеральные	j
	l.
расплавы	ļ
Металлически 3 2 3 2 1	14
е материалы	
Материалы на 3 1 2 3 2 2	13
основе	ļ
минеральных	ļ
вяжущих	
веществ	
Материалы на 3 3 3 3 3	18
основе	
полимеров	

^{*}Источник: **Жук, П.М.** Система критериев для оценки экологической безопасности предприятий строительных материалов [Текст] / П.М. Жук // Academia. Архитектура и строительство. -М., 2012. - \mathbb{N} 4. -C. 106—110.

Как видно из таблицы, минимальное негативное влияние имеет древесина (6 баллов), максимальное значение (18 баллов) имеют материалы на основе полимеров.

Была разработана приблизительная балльная оценка экологических факторов и их негативного влияния на экосистему. Шкалу суммарных нагрузок автор распределил следующим образом:

- не более 6 баллов низкая нагрузка;
- от 7 до 12 баллов средняя нагрузка;

от 13 до 18 баллов – высокая нагрузка на экосистему [114].

Результаты проведенных анализов показывает, что естественные материалы и их применение оказывает наименьшее воздействия на экосистему

окружающей среды и соответственно на состояние здоровья людей, в тоже время материалы более сложного строения, созданные человеком, оказывают большее воздействие с учетом ее преобразования.

Нерудные полезные ископаемые в основном используются как строительный, облицовочный и декоративный материал. Их добыча и разработка включает несколько этапов. В табл.2.3 было оценено влияние на окружающую среду добычи нерудных полезных ископаемых на каждом ее этапе и предложены несколько вариантов для снижения негативного воздействия на экосистему [24].

Таблица 2.3 – Экологическая оценка нагрузок по этапам жизненного цикла материалов*

Этапы жизненного	Экологические эффекты	Мероприятия по снижению
цикла материалов		нагрузок на экосистему
Добыча сырья,	Исчерпание природных	Отказ от нерационального
обогащение,	ресурсов. Нарушение	использования сырья.
транспортирование к	ландшафта. Нарушение	Увеличение доли при
меступроизводства.	экосистем за счёт выбросов,	использовании вторичного и
	сбросов, загрязнения почв.	возобновля-емого сырья, а
	Образование горнорудных	также техногенных отходов.
	отходов.	
Производство	Образование отходов,	Производство долговечных
материалов и изделий	возможные вредные выбросы,	изделий иматериалов.
	сбросы, загрязнения почв.	Ресурсосбережение. Создание
	Потребление энергии и	материалов
	сопутствующих материалов.	многофункционального
		назначения. Сокращение
		этапов обработки изделий
Применение материалов	Потребление энергии.	Использование качественных
и изделий (монтаж,	Образование отходов.	материалов. Отказ от
установка, укладка) при	Вредныевыбросы.	использования материалов
строительстве, ремонте,	Загрязнение биосферы.	вредных для здоровья
реконструкции,		человека.

реставрации		Соответствие долговечности
		отдельных материалов сроку
		службы всего здания.
Эксплуатация	Вредные выбросы в	Уход, ремонт, восстановление
материалов и изделий в	атмосферу. Ухудшение	материала и его
объекте («жизнь»в	здоровья людей и прочие	эксплуатационных
объекте)	виды воздействий, в том	характеристик. Своевременная
	числе при строительстве	замена материала,
		выработавшего свой ресурс
Уничтожение	Образование отходов при	Отказ от свалок и сжигания,
(захоронение) или	сносе зданий. Загрязнение	утилизацияи сортировка
повторное	биосферы. Нарушение	строительных отходов.
использование	ландшафта и т.д.	Приоритет повторного
		использования пред
		первичными материалами

^{*}Источник: составлена Дуванакуловым М.А. (2023)

В заключении можно сказать, что при оценке воздействия процессов добычи и разработки нерудных полезных ископаемых выбор метода оценки ОВОС зависит от специфики поставленной задачи. Балльная и экспертная оценка эффективны для предварительного прогноза в условиях отсутствия исходной информации. Расчетный метод целесообразно использовать в процессе проектирования разработки месторождения, а инструментальный метод может использоваться для комплексной оценки воздействия строительства карьера на окружающую среду.

2.2. Методы исследования

Методологическую базу диссертационного исследования составили подходы к проведению геоэкологических исследований, изложенные в научных работах стран СНГ [44; 45; 111; 90; 76]. В настоящее время открытый способ

разработки месторождений твердых полезных ископаемых имеет в мировой практике горного дела доминирующее распространение, обладая рядом социально-экономических и производственных достоинств в сравнении с подземным способом: большую безопасность; более высокие показатели по производительности труда и мощности горных предприятий; меньше сроки строительства и стоимость предприятий, а также окупаемости капитальных вложений.

Подходы по решению при разработке месторождений минерального сырья открытым способом отражены вработах А.И.Арсентьева, С.А.Ильина, Г.В.Калабина, Г.Г.Мирзаева, В.И.Голик, В.И.Комащенко, Г.А.Холоднякова, А.В.Хохрякова, С.П.Иванова и других ученых [7; 33; 38; 113; 107; 43; 20; 106].

Несмотря на большой объем и достигнутые успехи исследований, проблема остается актуальной. К сожалению, в трудах данных ученых при использовании расчетов не учитываются особенности природноклиматических условий.

При проведении исследований нами применялись следующие методы исследования:

- -обобщения и анализ литературных источников;
- -лабораторный анализ данных;
- -расчетный анализ (прогнозное загрязнение);
- -математического моделирования;
- -определение экономической эффективности.

В настоящее время наукой разработан ряд методов изучения воздействия добычи полезных ископаемых на природную среду.

Для осуществления этих задач применяются различные методы анализа, степень их разнообразия влияют на результаты исследований. Имеются ряд методов, отдельные из которых касающихся разработки нерудных материалов приведем ниже.

Расчетный метод определения величин выбросов загрязняющих веществ.

Для составления прогнозов неблагоприятных метеорологических условий применяется метод, разработанный в Главной Геофизической Обсерватории имени А.И.Воейкова [91], где используется интегральный показатель загрязнения воздуха (параметр Р), который определяется как по отдельным примесям, так и по их группе. По многолетним данным рассчитываются критические значения параметра, определяющие степень загрязнения воздуха. При этом используются некоторые качественные выводы теории атмосферной диффузии, в том числе о влиянии задерживающих слоев в пограничном слое атмосферы и т.д. Величина параметра Р определяется как по отдельным примесям, так и по их группе:

$$P = m/n, (2.1)$$

где n - общее число наблюдений в населенном пункте в течение одного дня; m - количество наблюдений в течение этого же периода времени с концентрацией, превышающей средне-сезонную величину в 1,5 раза, которая для каждого сезона определялась как среднее из трех среднемесячных значений концентраций.

По многолетним данным были рассчитаны критические значения параметра, определяющие степень загрязнения воздуха. Для этого проведена статистическая обработка всего ряда расчетных значений параметра Р по градациям отдельно для всех сезонов года. Можно выделить следующие градации значений параметра Р:

- пониженные (0,35);
- экстремально высокие (> 0,45).

К периодам с высоким загрязнением воздуха условно отнесены такие, когда значение параметра P> 0,35 отмечается непрерывно в течение трех дней и более. Величина параметра P рассматривается как предиктант и на основании статистической обработки она связывается с предикторами: скоростью ветра, устойчивостью атмосферы и др. Особенно большое значение приобретает учет

синоптических процессов при анализе и прогнозе длительных периодов (3 дня и более) с высоким загрязнением воздуха [91].

Анализ **метода инструментального определения** содержания загрязняющих веществ в промышленных выбросах. Процесс инструментального определения содержания загрязняющих веществ в выбросах можно разделить на следующие этапы:

- (а) отбор проб из газохода;
- (b) транспортировка проб;
- (с) подготовка проб к анализу;
- (d) измерение параметров потоков газов в газоходах;
- (е) измерение концентраций загрязняющих веществ.

Пробы газов из газоходов обычно отбираются в потоке с высокой температурой, влажностью, запыленностью и химической агрессивностью. В связи с этим применяются специальные устройства отбора и подготовки пробы к анализу, а также ее транспортировки до места аналитического контроля (анализа). К этим устройствам относятся: пробоотборные зонды, фильтрующие элементы, устройства охлаждения, хранения и транспортировки пробы, средства аспирации пробы, основанный на длительных научных исследованиях таких как процессов гипергенеза и развитие технологий понимание разработки месторождений – это труды П.П.Бастана, С.Б.Бортниковой, А.Б.Макарова, М.А.Пашкевич и других исследователей. Ими было показано, что вследствие особенностей форм нахождения полезных минералов, высокой степени дисперсности, изменений их физических и физикохимических свойств поверхности минералов техногенное сырье, как правило, не может эффективно перерабатываться с помощью традиционных методов. Поэтому для разработки профессивных технологий переработки техногенного сырья актуальными являются: создание методики моделирования гипергенеза в хвостах обогащения при их длительном хранении и исследование на ее основе основных процессов, протекающих на поверхности сульфидов и нерудных минералов, обоснование химических превращений минералов и изменений их технологических свойств в процессах вторичной переработки отходов [12; 16; 53; 74].

Вынужденное хранение огромного количества отходов, их удаление, транспортирование, обезвреживание, складирование, захоронение требует огромных финансовых затрат, отчуждает территории для их размещения, нарушает экологию в целом.

Некоторые ученые отмечают, что при геоэкологическом изучении воздействия добычи полезных ископаемых на окружающую среду в основном используются методы, включающие экологический диагноз территории, а точнее, открытая добыча полезных ископаемых, выступает одним из обязательных критериев в комплексной экологической оценке территории. Эти вопросы хорошо и широко обсуждаются в научных трудах таких ученых, как Б.И.Кочурова, К.И.Лопатина и др. [46; 47; 48; 51].

Большое значение имеет общий метод, предложенный русскими учеными К.И.Лопатиным и С.А.Сладкопевцевым для определения факторов, определяющих устойчивость геосистемы [51]. И научно доказано, что дополнение этого метода такими факторами, как глубина залегания грунтовых вод и вид полезных ископаемых, подлежащих добыче, даст высокие результаты [105]. Вводятся специальные весовые коэффициенты, учитывающие влияние горных работ и особенности региональных условий. Поэтому устойчивость геосистемы определяется потенциалом природы, освоенностью территории и интенсивностью осуществления различных видов хозяйственной деятельности.

В работе использованы методы математической статистики для обработки данных лабораторных исследований атмосферного воздуха. Статистическую обработку и анализ данных проводили на персональном компьютере с использованием пакета компьютерных программ Microsoft Excel, Statistica for Windows ver. 10.0.

Статистическую значимость различий между изучаемыми величинами устанавливали по t-критерию Стьюдента. Критерий t Стьюдента направлен на оценку различий величин средних и рассчитывался по следующей формуле:

$$t = \frac{M_1 - M_2}{m_1^2 + m_2^2}. (2.2)$$

где M_1 – средняя арифметическая первой сравниваемой совокупности (группы),

 ${
m M}_2$ – средняя арифметическая второй сравниваемой совокупности (группы),

m₁ – средняя ошибка первой средней арифметической,

m₂ – средняя ошибка второй средней арифметической.

Анализ качества поверхностных вод оценивался по данным статистической обработки гидрохимической сети по наиболее характерным для каждого водного объекта показателям, превышающим ПДК.

К характерным загрязняющим веществам отнесены те, у которых повторяемость (число случаев в году) концентраций, превышающих ПДК более 50%.

При оценке степени загрязненности поверхностных вод используются следующие классы качества воды:

- -1 класс «условно чистая»;
- -2 класс «слабо загрязненная»;
- -3 класс: разряд «а» «загрязненная»; разряд «б» «очень загрязненная»;
- -4 класс: разряд «а», «б» «грязная»;
- -5 класс «экстремально грязная».

При оценке степени загрязненности поверхностных вод использовались критерии вредных веществ для воды рыбохозяйственных водоемов.

Основными причинами загрязнения и ухудшения качества воды в открытых водоемах 2-категории являются: постоянное загрязнение поверхностных водоемов хозяйственно-бытовыми стоками на фоне

замедленных процессов самоочищения водоемов, отсутствие зон санитарной охраны -38,6%, отсутствие высокоэффективных очистных сооружений -22,7%.

По данным существующих исследований микроэлементы в поверхностные воды поступают в водоемы вследствие химического выветривания слагающих водосборы пород и в результате выпадения из загрязненной атмосферы (аэротехногенные). Они также могут поступать в составе сточных вод, обуславливая локальную нагрузку [82; 83].

Методы оценки миграции элементов. Для оценки различных факторов в процессах формирования химического состава вод использовался факторный анализ, в данном случае методом главных компонентов. Обработка данных осуществлялась с помощью компьютерной программы «STATISTICA 10.0».

Для исследования взаимодействия пород, слагающих водосборы и воды озер с целью оценки миграции элементов в системе «вода-порода» был рассмотрен коэффициент водной миграции по А.И.Перельману [83]. Он рассчитывается как отношение содержания элемента в минеральном остатке воды (w, %) к его содержанию в горных породах (r, %). Этот коэффициент отражает интенсивность водной миграции, определяемую свойствами самого элемента, а также степень их концентрации или рассеяния в поверхностных водах суши. Расчет коэффициентов водной миграции элементов осуществлялся по отношению к кларкам тех пород, к которым приурочены озера, что позволило получить более точные региональные характеристики, а также выделить универсальные закономерности.

Для экспериментальных исследований с целью оценки выщелачивания элементов для анализа выбраны 2 различных типа горных пород — кислые (граниты) и щелочные породы.

Образцы горных пород имеют массу 300-350 г, из которых были сделаны шлифы. Далее образцы были раздроблены на дробилке и отобраны методом квартования пробы по 10 г для определения химического элементного состава на ICP-AES (макроэлементы) и ICP-MS (микроэлементы).

Остатки измельченных образцов были просеяны последовательно через геологические сита фракцией 2-1, 1-0,5, 0,5-0,25, 0,25-0,1 и <0,1 мм. Из фракции 0,1-0,5 мм отбирали навески исследуемых горных пород для экстракции. Химическому составу природных вод присущи постоянные колебания, обусловленные глобальными изменениями окружающей среды и аэротехногенного загрязнения водосборов.

Лабораторный метод эколого-геохимических исследований. определения содержания ТМ в почвах изучаемого района использовался приближенно-количественный спектральный метод анализа $(\Pi KCA),$ позволяющий с необходимой чувствительностью определять около химических элементов, в том числе все основные индикаторы загрязнения. Исключение здесь представляют лишь ртуть, мышьяк, сурьма, фтор и кадмий. Определение данных элементов с желательной чувствительностью может быть произведено специальным количественным способом спектрального анализа [54].

Камеральный метод эколого-геохимических исследований. В методических рекомендациях [87] оценка загрязнения почв дается по геохимическим показателям, которые учитывают распределение как отдельных металлов, участвующих в загрязнении, так и их ассоциаций, обусловленных полиэлементностью химического состава техногенных потоков, формирующих загрязнения. К таким показателям относят коэффициент концентрации химических элементов (Ксі) и суммарный показатель загрязнения (Zc).

Коэффициент концентрации — это показатель кратности превышения содержания химических элементов в точке опробования над его средним содержанием в аналогичной природной среде на фоновом участке:

$$Kci = Ci/C\phi, \qquad (2.3)$$

где Ci — содержание химического элемента в точке опробования, Сф — среднее содержание элемента в аналогичной среде на фоновом участке.

Поскольку антропогенные аномалии чаще всего имеют полиэлементный состав, для них рассчитывается суммарный показатель загрязнения Z_c и суммарный показатель нагрузки Zp, характеризующие эффект воздействия группы элементов:

$$Z_c = \Sigma KK - (n-1), \tag{2.4}$$

$$Z_p = \Sigma K_p - (n-1), \tag{2.5}$$

где n — число учитываемых элементов с KK > 1 и Kp > 1 соответственно.

По величине суммарного показателя загрязнения существует ориентировочная шкала оценки аэрогенных очагов загрязнения, которая предусматривает следующие уровни [87].

Для снегового покрова:

- -менее 64 низкая степень загрязнения;
- -64-128 средняя степень загрязнения;
- -128–256 высокая степень загрязнения;
- -более 256 очень высокая степень загрязнения.

Основным критерием является площадь геосистемы, находящейся под антропогенным использованием. В данном случае мы попытались получить процентное соотношение площадей, отведенных под сельское хозяйство, леса и водные экосистемы, к общей площади региона. Такие показатели были получены на основе данных национальной статистики и с помощью космической фотосъемки.

Предлагаемый метод направлен на определение уровня устойчивости геосистемы к воздействию открытых горных работ на основе вышеперечисленных критериев [105]. Этот метод включает в себя несколько этапов математических расчетов.

Шаг 1. Ранжирование по убыванию значения уровня критериев, n=1 является наиболее важным показателем.

Шаг 2. Он заключается в определении пределов выполнения критериев устойчивости. В зависимости от интенсивности и качества критерия на изучаемой территории даются уровни низкий, средний или высокий (табл. 2.4).

Таблица 2.4 — Определение пределов показателей критериев устойчивости воздействия горнодобывающей деятельности*

Критерии	Ограничение уровня		
	низкое	среднее	высокое
1	2	3	4
Уклон поверхности	выше 5,0°	3,0°-5,0°	Менее 3,0°
Виды слоев, слагающих территорию	пески и супеси	суглинки	глина, известняк
Глубина расположения грунтовых вод	менее 10 м	10 - 20 м	более 20 м
Структура экологического каркаса (антропогенные участки в составе	более 70 %	50 – 70 %	менее 50 %
Система гумусового слоя	менее 2%	2,0 - 4,0 %	более 4,0 %
Уровень подверженности эрозии	Более 25%	10 – 25 %	менее 10 %
Гидротермический коэффициент	менее 0,9	0,9 - 1,0	Более 1,0
Первичная биологическая продуктивность	менее 8 т/га	8 — 14 т/га	14 — 20 т/га

^{*}Источник: **Хаванская, Н.М.** Методические подходы к оценке устойчивости геосистемы к воздействию горнодобывающей промышленности [Текст] / Н. М. Хаванская // Вестник Волгоградского государственного университета. сер. 3. Экономика. Экология. - 2011. - Вып. 3, № 1. - С. 254-257.

Шаг 3. Подсчет баллов. По итогам первого шага определяется количество баллов по каждому критерию с использованием значения веса и расстановка весовых коэффициентов важности критерия устойчивости для воздействия горных работ (табл. 2.5).

Таблица 2.5 – Расстановка весовых коэффициентов важности критерия устойчивости для воздействия горных работ*

Критерии	macca, n
Уклон поверхности	1
Виды слоев, слагающих территорию	2
Глубина расположения грунтовых вод	3
Структура экологического каркаса (антропогенные участки в составе геосистемы)	4
Система гумусового слоя	5
Уровень подверженности эрозии почвы	6
Гидротермический коэффициент	7
Первичная биологическая продуктивность	8

^{*}Источник: Хаванская, Н.М. Методические подходы к оценке устойчивости геосистемы к воздействию горнодобывающей промышленности [Текст] / Н. М. Хаванская // Вестник Волгоградского государственного университета. сер. 3. Экономика. Экология. - 2011. - Вып. 3, N 1. - C. 254-257.

Для расчета этого значения воспользуемся правилом Фишберна [104]:

$$K_i = \frac{2(N-n+1)}{N(N+1)},$$
 (2.6.)

где Кі - максимальный балл для і-го критерия;

n - вес критерия;

N - общее количество критериев.

Правило Фишберна отражает тот факт, что об уровне значимости критериев неизвестно ничего, кроме того, что они расположены по порядку убывания значимости.

Шаг 4. Распределение баллов по уровням:

а) в высокий уровень ставится максимальный балл критерия, рассчитанный по формуле Фишберна (табл. 2.6);

Таблица 2.6 — Определение баллов критериев устойчивости к горнодобывающему воздействию*

Критерии	Bec,	Значимость по	Балл
	N	критерию	(Ki*100)
		Фишберна (Кі)	
Уклоны поверхности	1	0,22	22
Вид отложений, слагающих территорию	2	0,20	20
Глубина залегания грунтовых вод	3	0,17	17
Структура экологического каркаса (площадь	4	0,14	14
антропогенной составляющей геосистемы)			
Содержание гумуса в почвах	5	0,11	11
Степень эродированности почв	6	0,08	8
Гидротермический коэффициент	7	0,05	5
Первичная биологическая продуктивность	8	0,03	3
Итого		1	100

^{*}Источник: **Фурманова, Т.Н.** Геоэкологическая оценка воздействия добычи общераспространенных полезных ископаемых на состояние окружающей среды (на примере белгородской области) [Текст]: дис...канд. геогр.наук: 25.00.36/ Т.Н.Фурманова. —Белгород, 2015. -165 с.

- б) для нижнего уровня присваивается максимальный балл, деленный на три (количество уровней);
- в) для определения баллов среднего уровня необходимо величину d шаг, по формуле:

$$d = (балл высокого уровня - балл низкого уровня) / 2$$
 (2.7.)

Шаг 5. Интерпретация полученных балльных показателей в качественную характеристику устойчивости геосистемы к горнодобывающему воздействию.

Исходя из проведенных расчетов, максимально возможным суммарным баллом по всем критериям является 100, соответственно, минимально возможный балл составляет 32,9.

Таким образом, балл среднего уровня равен баллу высокого уровня, уменьшенного на шаг. Результаты распределения баллов по уровням отражены в табл. 2.7.

Таблица 2.7 – Распределение баллов критериев устойчивости геосистемы к горнодобывающему воздействию по степени*

№	Критерии	Степень устойчивости		
п/п		Низкая	средняя	высокая
1	Уклоны поверхности	7,3	14,6	22
2	Вид отложений, слагающих территорию	6,6	13,3	20
3	Глубина залегания грунтовых вод	5,6	11,3	17
	Структура экологического каркаса (площадь	4,6	9,3	14
	антропогенной составляющей геосистемы)			
5	Содержание гумуса в почвах	3,6	7,3	11
6	Степень эродированности почв	2,6	5,3	8
7	Гидротермический коэффициент	1,6	3,3	5
8	Первичная биологическая продуктивность	1	2	3
	Итого	min 32,9	66,4	max 100

^{*}Источник: составлена автором

Далее, необходимо рассчитать числовые интервалы уровней устойчивости:

 $f = (\max \, \text{балл} - \min \, \text{балл}) / 3 \, (\text{количество интервалов})$ (2.8.)

Таким образом, f = (100-32,9) / 3 = 22,4.

Верхняя граница низкого уровня устойчивости равна минимальному уровню, увеличенному на £.

Нижняя граница среднего уровня на 0,1 выше верхнего значения низкого уровня, а верхняя граница среднего уровня получается при увеличении нижнего на £ Нижняя граница высокого уровня на 0,1 выше верхнего значения среднего уровня. Верхняя граница высокого уровня, соответственно, проводится по значению равному 100 баллам.

Найдем интегральную оценку, демонстрирующую уровень устойчивости геосистемы к горнодобывающему воздействию. Просуммировав балльные показатели критериев, получаем следующие интервалы баллов:

низкой степени устойчивости соответствует (32,9 - 55,3); средней степени устойчивости соответствует (55,4 - 77,8); высокой степени устойчивости соответствует (77,9 - 100).

Ввиду того, что под устойчивостью геосистемы к горнодобывающему воздействию мы рассматривали ее способность противостоять горнотехническому воздействию, а также способность восстанавливать свои прежние свойства, нарушенные этим воздействием, то при определении уровней устойчивости нами учитывалось состояние свойств геосистемы.

Геосистемы с низкой степенью устойчивости к горнодобывающему воздействию подвержены быстрым и интенсивным изменениям, даже при низкой горнотехнической нагрузке. При этом, происходит глубокое нарушение саморегуляции, восстановительные процессы протекают крайне медленно. Для поддержания экологически безопасного состояния данных геосистем в кратчайшие сроки необходимо проведение комплекса мероприятий по оптимизации нарушенных земель.

Средняя устойчивость геосистем свидетельствует о возможности выдерживать более длительные и масштабные воздействи, при этом, сохраняя способность к самовосстановлению, при условии проведения отдельных рекультивационных работ.

Обладая высокой степенью устойчивости, способны геосистемы выдерживать длительные и интенсивные нагрузки. Для них характерно активное формирование техногенных сукцессий, что, не исключает проведения дополнительных мероприятий рекультивации, ПО тех, помимо что предусмотрены проектом.

Далее рассмотрим, инновационные методы оценки воздействия техногенных воздействий разработки нерудных материалов на окружающую среду.

Информация о первичном распределении в геосистемах выбросов горнорудных производств служит основой баз данных для любых экологических исследований. Однако сами по себе базы данных не обладают прогностическими свойствами. Поэтому, основной задачей исследования является сопоставление элементов-загрязнителей сравнительное содержания В природных средах и выявление ореолов их рассеяния, а геостатистическая обработка химико-аналитических данных, позволяющая дать комплексную оценку состояния экосистемы, определив тем самым зоны экологического риска.

Для этого требуется установить степень загрязненности территории высокотоксичными веществами, определить формы существования элементов в газовой фазе, твердом состоянии и растворенном виде, построить полиэлементные карты, идентифицирующие ассоциации элементов, совместно поступающих, раздельно мигрирующих и накапливающихся в объектах окружающей среды.

Выявление заранее неизвестных источников воздействия основано на выявлении устойчивых ассоциаций элементов с помощью факторного анализа. Серия расчетов и картографических построений позволяет обнаруживать объекты в условиях неопределенности природы загрязнений.

Оптимальным способом представления информации является картографический, где значения контролируемых параметров визуализированы (цветом или знаком) в соответствии с критериями оценки состояния природной геосистемы. Для построения карт целесообразно среды возможности геоинфомационных систем (ГИС). ГИС позволяет рассматривать имеющиеся данные относительно их пространственных взаимоотношений, проводить комплексную оценку ситуации и принимать более точные решения в процессе управления [101]. С помощью ГИС удобно моделировать влияние и распространение загрязнения от точечных и пространственных источников на местности. Результаты модельных расчетов можно наложить на природные карты, например, на карты жилых массивов. В результате можно оперативно оценить последствия экстремальных ситуаций, подобных разливу нефти или влиянию постоянно действующих точечных и площадных источников загрязнения. Это выводит мониторинг окружающей среды на качественно новый уровень, поскольку от момента сбора информации до получения результатов, необходимых для принятия решений, проходит минимальное время.

Атмогеохимический метод исследований (снегогеохимическая съемка) применен для изучения пылевой нагрузки и особенностей вещественного состава пылеаэрозольных выпадений. Использованы данные приуроченные к концу сезона устойчивого снежного покрова перед началом подтаивания.

Схема отбора проб составлена с учетом розы ветров и характера рельефа, а также расположения и особенностей основных источников загрязнения. Учитывались сеть автодорог и положение жилых массивов.

С целью изучения минеральной составляющей твердого осадка снега и распределения в ней элементов в виде отдельных фаз и включений был проведен электронно-зондовый рентгеноспектральный микроанализ (РСМА) на рентгеноспектральном микроанализаторе Superprobe JXA-8200 (Япония).

Обработку аналитических данных проводили с использованием прикладных программ Statistica 6.0 и Microsoft Excel 2007. Статистическая обработка данных включала в себя определение следующих основных параметров: среднее значение, минимальные и максимальные значения, коэффициент концентрации. Графические материалы обрабатывались с помощью программ Adobe Photoshop v.8 CS, CorelDRAW X3, Surfer 8, QGIS.

Одной из главных характеристик загрязненности территории является ее интенсивность, которая определяется степенью накопления элемента загрязнителя по сравнению с фоном.

Показателем уровня аномальности содержания элементов является коэффициент концентрации (KK), который рассчитывается как отношение содержания элемента в природной среде (C) к его фоновому содержанию ($C\phi$):

$$KK = \frac{C}{C_{\phi}}, \tag{2.9}$$

После расчета составляется геохимический ассоциативный ряд элементов с коэффициентом концентрации в порядке убывания, что характеризует аномальность содержания химических элементов.

Более точную оценку атмосферного загрязнения можно получить, построив карты распределения нагрузки по аддитивным показателям – ассоциациям элементов, накапливающимся симбатно, физико-химическим параметрам атмосферных осадков – Eh, pH, TDS и пылевой нагрузке. При построении таких карт следует учитывать, что исходные данные требуют не только предварительной интерполяции и аппроксимации, но и выявления статистически и геохимически закономерных ассоциаций этих элементов.

Среди детерминистских методов наиболее известен кластер-анализ, с помощью которого можно оценить гетерогенность заданного множества объектов, представленную в виде дендрограммы иерархических связей выделенных классов. Метод позволяет выделять новые, не предполагаемые классы, без каких-либо априорных соображений. Объективное разделение на группы сравнительно однообразной (в петрохимическом смысле) выборки анализов дает возможность выявить в каждой из них химическую индивидуальность, которую трудно обнаружить при обычной статистической обработке векторов химических составов [22].

В данной работе моделировался предельный случай, когда большая часть осадка вступила во взаимодействие. Такой сценарий моделирования выбран на основании предшествующих исследований Белозерцевой и др. [13], показавших, что до 80% пылеаэрозолей растворяется в первый год, вступая во взаимодействие с атмосферными осадками почвенными водами.

Заключение по главе 2

Проведенный анализ имеющихся данных по физико-географическим особенностям южного региона Кыргысзатана позволил:

- определить круг приоритетных методологий, необходимых для полной геоэкологической оценки территории;
- обоснованно определить плотность опробования и характер распределения и отбора проб;
 - выбраны наиболее оперативные (и точные) методы анализа.

Подобраны оптимальные методы статистической обработки аналитических результатов, позволяющие с помощью ГИС-технологий выявлять геохимическую специфику техногенно-нагруженных территорий в зоне воздействия разработки нерудных материалов.

Схема отбора проб составлена с учетом розы ветров и характера рельефа, а также расположения и особенностей основных источников загрязнения. На исследуемой территории учитывались сеть автодорог и положение жилых массивов.

Для изучения твердых частиц в составе снега и распределения в ней элементов в виде отдельных фаз и включений был проведен электронно-зондовый рентгеноспектральный микроанализ (РСМА) на рентгеноспектральном микроанализаторе Superprobe JXA-8200 (Япония).

Обработку полученных аналитических данных проводили с использованием прикладных программ Statistica 6.0 и Microsoft Excel 2007. Статистические данные включали в себя определение следующих основных параметров: среднее значение, минимальные и максимальные значения, коэффициент концентрации. Графические материалы обрабатывались с помощью компьютерных программ.

ГЛАВА 3. РЕЗУЛЬТАТЫ ЛИЧНЫХ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

3.1. Освоенность нерудных месторождений на территории южного региона Кыргызстана и их геоэкологическое состояние

Техногенные изменения компонентов окружающей среды могут обнаруживаться как на приповерхностных, так и на глубинных поверхностях. Это особенно заметно в области разработки сырья. Исследования, разработка и переработка сырья составляют геологическую экосистему (ЭГС) горнорудной категории, которая характеризуется изменениями компонентов природной среды, как на поверхности, так и в геологическом сегменте.

На территории южного региона Кыргызской Республики разница в источниках нерудного сырья актуальна только в густонаселенных районах, продукция которых используется в строительстве. Нередко контур разработки месторождения располагается в пределах черты населенных пунктов – городов, районных и сельских агломераций. Однако исследований, посвященных влиянию оптимизации этих ресурсов на природные компоненты окружающей среды и связанных с экологическими проблемами носят эпизодический характер.

Если рассматривать структуру переработки неминерального сырья, то они используются в строительстве, сельском хозяйстве и металлургии, где составляют около 30% карбонатных пород [26].

В период активного технологического развития начала страны в 1980-х гг. горнодобывающими предприятиями было добыто около 70% руды, 95% структурных ископаемых, 20% каменноугольных и 90% бурых углей [94; 56]. Экономика страны зависит от добычи полезных ископаемых, и является приоритетом развития отраслей экономики. В результате значительного развития горного дела были созданы эколого-геологические системы,

характеризующиеся определенной направленностью обмена компонентами природной среды. Вклад этих компаний в экономику нашей страны показан на рис. 3.1.

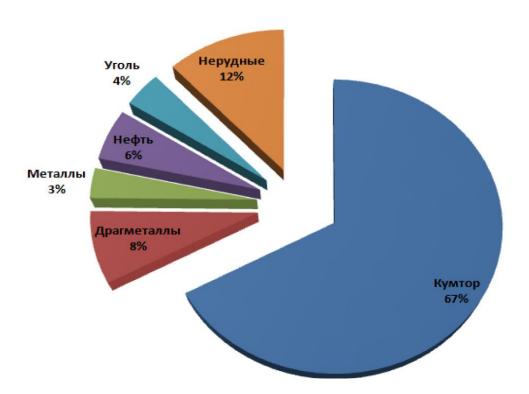


Рисунок 3.1 — Доля горнодобывающих компаний в экономике KP* *Источник: Промышленность KP. Статистический сборник. –Б.: Нацстатком, 2023. -97 с.

Для поддержания экологического баланса природоохранная система должна обеспечивать эффективное использование природных ресурсов с учетом потенциала развития хозяйственной и производственной деятельности региона. Ниже приведены сведения о разработке нерудных полезных ископаемых на южном регионе Кыргызстане и их вкладе в экономику нашей страны (табл. 3.1, 3.2).

Таблица 3.1 – Предприятия по добыче нерудных полезных ископаемых*

$N_{\underline{0}}$	Название компании	Район	Платежи, сом
1	ООО "Туз-Бел Таш"	039 Сузакский район	55147 524

2	ОсОО "Данур-Юг"	997 УККН Юг	27 026 393	
3	ОсОО "Айдоочу"	027 Нокатский район	7 082 073	
4	АО "Нур-КМ"	031 Кызыл Кия	6 410 529	
5	ОсОО "Дары-Булак Абшир"	997 УККН Юг	5000293	
6	ОсОО "Экс ЛТД"	997 УККН Юг	2 906 521	
7	ОсОО "Керент"	032 г.Ош	1 806 872	
8	ООО "Сман-007"	029 Узгенский район	1 238 013	
9	Кооператив "Кайынды им. Исмаила"	044 Тогуз-Тороуский раойн	1 089 270	
10	OcOO «Сари-Таш-ОсОО "Mega union industry"	039 Сузакский район	1 016 483	
	Общий:113921295			

^{*}Источник: составлена автором

Результаты табл. 3.1 указывают на большом вкладе предприятий нерудных материалов и их суммарное значение составляет 113 921 295 сом.

Отдельно рассмотрены денежные средства, поступающие от предприятий по добыче строительных материалов (табл. 3.2).

Таблица 3.2 – Предприятия по добыче строительных материалов*

No	Компания	Район	Платежи
1	ЗАО «Южно- Кыргызский цемент»	031 г. Кызыл Кия	457092 279
2	ОсОО "Южный комбинат строительных материалов"	997 УККН Юг	85315755
3	OcOO "Topy"	048 Джалал-Абад	15 087 276
4	ОсОО "Сафарн"	032 г.Ош	15 029 655
5	ОсОО "Табылгы"	027 Нокатский район	11305432
6	ОАО "Завод ЖБИ-4"	997 УККН Юг	11 210 945
7	ОсОО "Сын-Таш"	032 г.Ош	10 196 595

8	ЦСК Джалалабадское СМУ ТТ"	048 г.Джелал-Абад	6 459 176
9	ОсОО "Токошев"	029 Узгенский район	5 705 544
10	США "Ошун Экстра Стоун"	997 Южный УККН	5 657 537
11	АООТ "Ош Ак-Таш"	032 г. Ош	4 477 858
12	ОсОО "Улан Чи"	025 Кара-Сууйский район	2 457 747
13	АО "Болот"	032 г.Ош	2011491
14	ОсОО "Интергельпо"	027 Нокатский район	1 847 895
15	Корпорация Аскед	032 г.Ош	1 203 913
16	ОсОО "Ошстройсервис"	025 Кара-Суйский район	1 060 560
19	OcOO "JM Company"	025 Кара-Сууйский раойн	1 056 969
	Общий		640894097

^{*}Источник: составлена автором

Результаты табл. 3.2 указывают на значительном вкладе предприятий по добыче строительных материалов и их суммарное значение составляет 640894097 сом.

Воздействие обработки нерудных материалов на окружающую среду подразделяется на прямое, заключающееся в непосредственном проведении горных работ, и косвенное, включающее в себя эколого-геологические последствия разработок.

Недра южной части Кыргызской Республики богаты различными нерудными сырьевыми месторождениями, которые применяются в различных направлениях промышленности в естественном или переработанном виде.

Для промышленности цементной отрасли, главным сырьем являются карбонатные - глинистые месторождения Кувасайское (известняки — 27,6 млн т), Карачатырское (сланцы — 13,3 млн т), Ташкомурское (глины — 12,5 млн т) и другие.

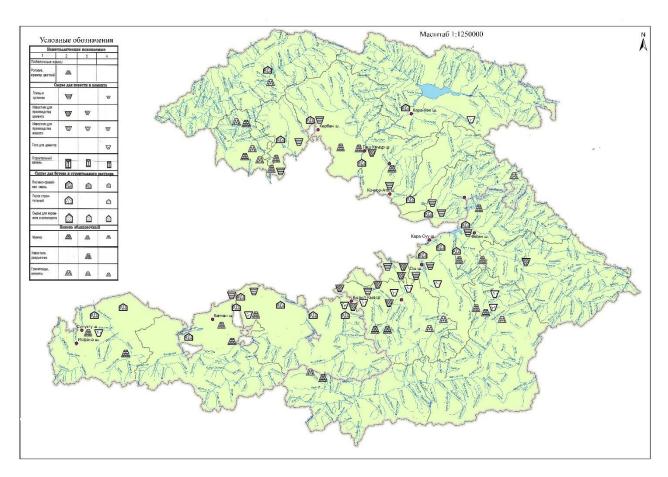
Сектор по выпуску декоративных камней обеспечивается запасами цветных мраморов месторождений Арым (1,8 млн м³), Бозбутоо (3,6 млн м³), Ташкоро (1,2 млн м³), Чарташ (2,4 млн м³), а также залежи известняков-ракушечников Сары-Таш (14,1 млн м³).

В республике имеются огромное количество месторождений песчаногравийной смеси (501,6 млн м³), гипса (40,2 млн м³), суглинков и глины (267,2 млн м³) для производства жженного кирпича, для строительной индустрии. Для производства и выпуска керамзитовой продукции резведаны и имеются ресурсы сланца и алевритов (110,3 млн м³).

В республике обнаружены залежи каменной соли (32,8 млн т), в том числе крупные местрождения как, Кетмен-Тобо (6,6 млн т), Чон-Алай (21,5 млн т) и др., которые широко могут использоваться в пищевой, животноводческой, а также в химической промышленности.

На территории южного Кыргызстана расположены много месторождений и залежей нерудного сырья, редко встречающих в других частях света например месторождения волостинита Кара-Корум II в Чаткальском районе с запасами около 30 млн т, залежи фарфорового камня Учкурт, с запасами свыше 9 млн т, залежи родусит-асбеста Каракара с запасами более 618 т и др.

Ресурсный потенциал драгоценных камней огромен. Помимо открытых месторождений мрамора Улуу-Тоо и Ходжигор, в этом районе было обнаружено несколько многообещающих поделочных камней для юверилной отрасли. Такими являются следующие проявление рубина Ормизан, Кок-Белес, Ак-Терек расположенные бассейне реки Сох. Наиболее песрпективным считается месторождения синего и голубого сапфира, обнаруженные на северном склоне Туркестанского хребта.


Согласно геологическим данным и отчетам геологической службы, сырьевая база строительных материалов почти полностью обеспечивают и снабжают нужды региона [73].

В последние годы бурно развивающая строительная промышленность толкает привлечения частных инвестиций в геологическую разведку частных инвестиций. В результате чего обнаружены новые запасы нерудных материалов. По изученным материалам, в окрестностях города Ош и Ошской области разведаны и подготовлены к разработке около 10 месторождений строительных материалов как песчано-гравийная смесь, гипс, суглинки. На разработку залежей месторождения известняка-ракушечника расположенной в "Сары-Таш" выдано более 20 лицензий на разработку, и ежегодно вынимается из залежей более 15 тыс. м³ блоков природного камня товарного качества.

разработки Актуальность месторождений нерудных включены стратегию развития страны, поэтому рамках плана мероприятий, Национальной академии наук Кыргызской Республики с целью активизации внедрения разработок в экономику республики, лаборатория "Комплексного использования нерудных ресурсов" планируется организовать масштабную научно-исследовательскую работу ПО комплексному освоению месторождений нерудных ресурсов юга Кыргызской Республики. Южный регион Кыргызстана характеризуется и имеет сложное безусловно геологическое строение, магматическим, осадочным метаморфическим типами пород, здесь развиты горные породы различного возраста, состава и разного происхождения. Нерудные месторождения в большинстве случаев покрыты плодородным слоем почвы. Они встречаются в разрезах отложений почти всех геологических систем, начиная от самого протерозойского нижнего возраста кончая самыми современными четвертичными отложениями. Однако требуется отметить, что палеозойские горные образования не располагают практического значения и практически не используются [49].

Анализ и разбор всех существующих геологических данных, изученных на различных этапах и стадиях геологического изучения залежей месторождений и проявлений нерудных полезных ископаемых из которых: 21 строительного

сырья, 35 ландшафтно-декоративные материалы, 30 участки карбонатных пород, 13 месторождения обычного гипса, более 100 месторождений сырой глины и месторождений пластичных мягких пород. В качестве нового первого метода, мною разработана первая схема распределения добываемых нерудных полезных ископаемых в масштабе 1:1 250 000 южного региона Кыргызской Республики (карта 3.1).

Карта 3.1 – Добываемые нерудные полезные ископаемые на территории южного региона Кыргызстана*

*Источник: составлена автором

Следует отметить, что качественный состав, физические и механические свойства строительных материалов в южном регионе изучены неравномерно и неполностью. В последние годы независимости значительно можно сказать в разы увеличился спрос на строительные материалы. Соответственно, тенденция развития строительной промышленности привела к увеличению разведочных

работ и разработке мелких месторождений, которые составляют основу полезных ископаемых. В настоящее время все чаще частные инвесторы заинтересованы в разработке общераспространенных полезных ископаемых (суглинки, пески, песчано-гравийно-валунные смеси), пригодном для производства строительного сырья и продукции. Ниже представлен и приведен обзор основных видов нерудного сырья, используемого и применяемого в строительстве.

Натуральные строительные камни. Сбор кадастровых и базы данных об оседании (седиментации) и проявлении по 21 естественным природным месторождениям, которые по генетическим признакам и симптомами разделены на три группы: изверженные породы, осадочные породы и метаморфические породы. Многие важнейшие осадочные месторождения как известнякракушечник и доломиты расположены в Баткенской и Ошской областях, запасы которых достигают и исчисляются миллионами кубометров. Месторождение порфиритов Абширское, расположенное в Ноокатском районе, с запасами в один миллион кубометров по категории C_1 , имеет важное промышленное значение. На территории Аксыйского района Жалал-Абадской области имеются песчаники, используемые для получения и изготовления камня и брусчатки.

Декоративно-облицовочные камни. В южном регионе Кыргызстана проведена разведка и установлена освоение на 35 месторождениях декоративно-облицовочных камней. Среди магматических пород преобладают гранит и гранодиорит, они чаще всего встречаются и распространены в Жалал-Абадской области исследуеого региона (месторождения гранодиоритов располагаются на участках: Кайнама, Кочкор-Ата, а гранитов на участках Кок-Серек и Мискин). Прогнозные ресурсы которых выше 10 млн м³.

В поселке Хайдаркен располагаются большие значительные месторождения магматических плутонических горных пород основного состава – габбро. Эти местророждения Заркар, Сары-Талаа и др.

Среди осадочного комплекса облицовочных пород перспективными являются месторождения известняка, которые широко распространены на участках Сары-Таш, Оюлма, Акташ, Сары-Талаа, Тенге др. Суммарные общие запасы составляют более 50 млн м³. Из месторождений мраморных камней перспективным можно выделить участки Акарт и Абшир расположенные в Ноокатском райне, участок Кок-Суу находящийся в Кадамжайском районе [61].

Несмотря на увеличение спроса на облицовочные камни в рынке строительной индустрии и имея большие запасы этих пород, отрабатывается малое количество месторождений известняка-ракушечника "Сары-Таш" и "Ак-Таш", на стадии промышленной разработки месторождения ангидритового гипса "Ажике", месторождение пикрита в "Чиле". Черный мраморизированный известнякрасположенное на участке "Бузбуто" разрабатывается местным населением кустарным способом.

Доступность залегающих запасов месторождений известняковракушечников в Кыргызстане дает практически неограниченно наращивать объемы и производительность выпускаемой продукции. При этом можно снижать себестоимость и повышать конкурентоспособность на рынке [42].

Потенциал возможности развития облицовочных и декоративных камней, в наших условиях, зависит от крупных инвестиций, для применения инновационных технологий разработки, добычи и заводской обработки природного камня.

Карбонатные породы. Эти породы распространены и занимают большие площади, иногда образуют пласты большой мощности. По изученным материалам, на юге республики располагаются более 30 месторождений категории C_2 с доказанными установленными запасами 250 млн м³.

Заинтересованность в промышленной разработке карбонатных пород усиливается с введением, на юге республики, крупнейших цементных заводов. Но на сегодня, значительного роста продукции промышленности строительных материалов (ПСМ) не наблюдается [39]. Крупные запасы цементного сырья

располагаются в Баткенской области, выявлены запасы цементного сырья в Жалал-Абадской области.

Гипс. Гипсовый пласт Ошской области в основном связан с меловыми и палеогеновыми породами и приурочен к отложениям горного обрамления Ферганской впадины. В целом на юге Кыргызстана, отложения гипсовых минералов характеризуются однородным гранулометрическим составом и хорошей мощностью, распростаренные на значительно больших площадях. Гипс весьма часто загрязнен глинистыми веществами, снижая его качество как сырья.

Месторождения минерального гипса и их проявления почти мало изучены и его распространение неравномерно. На балансе государства имеются 8 месторождений гипса класса A+B+C₁ объемом 29320807 т. На сегодняшний день осваиваются два месторождения - Чангырташское (Сузакский район) и Ноокатское (Ноокатский район). Отальные не разрабатываются и считаются как резервные.

В связи с развитием строительной отрасли и повышением спроса на вяжущие материалы приводит к увеличению сырьевой базы гипса. Соответственно это тенденция способствует к развитию геологоразведочных работ на перспективных объектах в Ала-Букинском районе, в Ноокатском районе за счет детальной доразведки Абширсайского месторождения с запасами по категории $C_2 - 26,4$ млн т, также в Джалал-Абадской обасти за счетдетальной доразведки Чангетсайского месторождения с перспективными запасами по категории $C_2 - 1232$ тыс. т [74; 70].

Глиняные породы и перспективы их использования. По данным Геологической службы, республики на рассматриваемом регионе зарегистрировано 300 участков месторождений проявленийоколо образований глинистых пород, представляющих собой лессовидные суглинки, глины, каолины, камнеподобными аргиллитовидными глинами, глинистыми сланцами.

Из них наиболее общераспространенные это лессовидные суглинки — около 100 объектов, затем глины 80 объектов, реже распространены глинистые сланцы более 10 объектов, зарегистрированы более 3-х объектов каолина.

Основная часть лицензированных или зарегистрированных глинистых пород располагаются в холмистых предгориях и приурочены к равниным простарнствам межгорных впадин и речных долин. Глинистые сланцы фиксируются обычно в предгорьях обрамляющих хребты.

Глинистые породы особенно лессевидные суглинки широко распространены и объемы практически неограничены. За последние десятилетия на юге республики широко и быстро развивается производство жженного кирпича. Например только на территории Сузакского района Жалал-Абадской области функционировало 12 кирпичных заводов с производственными мощностьями каждого более 1,5 млн штук жженного кирпича в год. В 2024 году построено и на стадии в эксплуатацию три новых кирпичных заводов. Этот факт указывает на возможность потенциала использования глины.

Обломочные породы. Следует отметить, что большая часть песчаногравийно-валунных отложений разрабатываются кустарным способом. Только в окрестностях г. Ош за период 2018-2022 гг. введено в эксплуатацию 12 гравийносортировочных узлов.

Сырьем для производства гравийно-песчаных материалов являются месторождения Ак Буура, Ошское IX, Каратай, Мады, Ак-Терек, Талдыксай, Таш-Арик и другие. Разработка месторождений примитивный ведется открытым спобом, в большинстве случаев отсутствуют вскрышные породы и экономически выгодные условия, увеличение спроса населения и промышленности привлекают и создают благоприятные условия для инвестирования в разработку месторождений.

Для развития строительной индустрии большой резевр представляет крупнозернистый строительный песок, кварцевый песок и песчаник, глиежи, минеральные пигменты и другие нерудные отложения. В настоящий момент на

территории Токтогульского района проводят разработку кварцевого песка на 4 лицензионных участках.

На основе изученного и аналитического мониторинга запасов нерудного сырья выявлены возможности развития и потенциал промышленности, связанные с нерудным полезным ископаемым. Требуется глубокое изучение геологических и геоэкологических условий нерудных полезных ископаемых. А также технических характеристик сырья, влияния на окружающую среду в процессе разработки месторождений, в частности на природных ландшафт, загрязнение атмосферного воздуха, истощение биоразнообразия флоры и фауны, изменение и влияние на экосистему локального участка и в целом южного региона.

Разработка доказанных научных основ развития и освоения нерудной сырьевой промышленности, в будущем должна основываться на всесторонних и прикладных исследованиях области разработки исчерпывающих В использования нерудного сырья, числе комплексных технико-В TOM изучениях исследованиях добычи экономических И нерудного тщательном обосновании, с изучением альтернативных методов, предложение вариантов добычи, совершенствование отработки разведанных объемов сырья и его переработки в промышленном объекте. Все это в конечном итоге приведет к выстроенною и извлечению ценных научно-технических предложений по комплексной переработке нерудных полезных ископаемых.

3.2. Геоэкологические проблемы освоении нерудных месторождений южного региона Кыргызстана

Учитывая рост добычи минерально-сырьевые ресурсы республики могут полностью покрывать потребности в производстве строительных материалов. Но не смотря на логистические расходы, на рынке строительных материалов страны существует, можно сказать и преобладает импортная продукция.

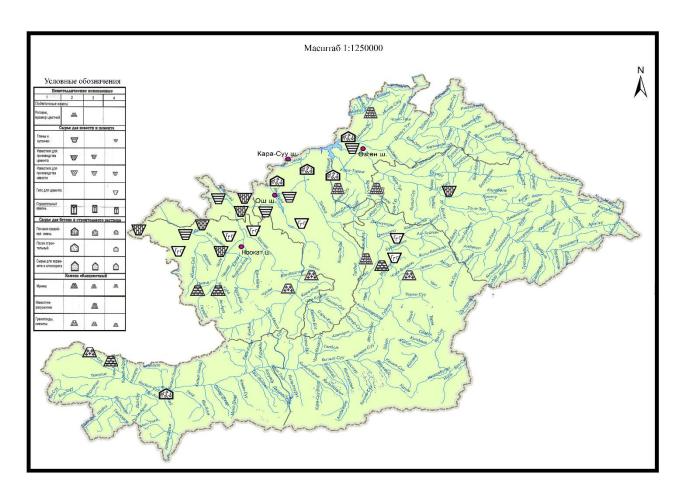
По данным статотчетов, при добыче нерудных полезных ископаемых, по объему добычи, на первом месте находится месторождения песчано-гравийной смеси, которые составляют львиную долю всей добычи нерудных материалов по республике. Интенсивная добыча песчано-гравийной смеси на южном регионе оказывает значительное воздействие на изменение местного ландшафта, тем самым участки разработки полезных ископаемых становятся полем развития георисков, в том числе водного характера, так как основные разработки ведутся в поймах рек.

Открытая разработка нерудных месторожнеий подвергает георискам водного генезиса, которая проявляется в момент аномальных и сезонных осадков, селевых потоков, подтоплениями поверхностными и подземными водами. Обезвоживание пластов создают резервуары, которые в свою очередь воздействуя на гидродинамическую зону уровня подземных вод перерапределяет нагрузку вызывая природоно-техногенные изменения в районах добычи нерудных месторождений.

Промышленные предприятия Ошской области (всего 75 предприятий в 2020 году), в основном расположены в г. Ош (43 предприятия), Кара-Суйском районе (10 предприятий) и Ноокатском и Узгенском районах (по 7 предприятий). Карасуйский район (по состоянию на 2020 год) занимает первое место по объему промышленного производства среди районов и городов области. В целом по Ошской области произведено индустриально-промышленной продукции на сумму 1132,0 млн сомов и на сумму 650,2 млн сомов потребительских товаров, за ней следуют город Ош (825,4 и 519,2), Араванский район (241,0 и 41,6), Узгенский район (126,6 и 105,9) и др. [85].

Количество предприятий Ошской области, занимающихся разработкой нерудных материалов, составляет 441, которые включают в себя 94 предприятий занимающихся добычей песчано-гравийной смеси, 48 предприятий разработкой суглинка, 16 предприятий разработка песка, 283 других предприятий разрабатывающих – гранит, известняк, гипс и т.п.

В Ошской области функционируют 22 хозяйствующего субъекта занимающихся разработкой облицовочных камней [56]. Из месторождений облицовочных камней детально изучены и разрабатываются месторождения белого мрамора Акарт, месторождение известняка-ракушечника Сары-Таш. На месторождении гипса-ангидрида Аджике проведена предварительная разведка.


Наиболее перспективным среди метаморфизованных пород является месторождение Акарт, расположенное в 30 км южнее поселка Янги-Наукат в верхнем течении реки Чиле. Белый мрамор, состоящий в основном из кальцита, соответствует требованиям качества ГОСТ. Выход блоков I-V групп - 51,35 %. Средний выход товарных плит 12 м²/м³. Балансовые запасы по категориям A+B+C₁ составляют 3,127 млн м³, из которых 485 тыс. м³ составляют запасы первого этапа разработки. Резервное меторождение для промышленного освоения также принято во внимание [58].

Здесь на первом месте стоят залежи известняка Сары-Таш. Они представляют собой декоративную архитектурно-выразительную породу с хорошо отполированной текстурой. Качество известняка соответствует требованиям ГОСТ. Выход блоков по первому слою составляет 62,2%, по второму — 73%, выход плит — 23,1 и 16 м²/м³. Известняки-ракушечники используются для получения блоков, облицовочных плит и стенового камня, баланс которых составляет 14,046 млн м³; Забалансовые запасы составляют 2464 тыс. м³ и эти местрождения разработываются в данный момент.

Для наращивания ресурсной базы в оценочное исследование были включены месторождение Сартала, оцениваемое в 2 млн м³, и месторождение Уртак, содержащее 200 тыс. м³ залежей известняка.

Месторождение Аджике предварительно разведано для промышленной оценки запасов блочного камня. Этот район состоит из двух отдельных районов – Горка и Левобережный. Производство блоков II-IV составляет 22,6%, изготовление облицовочных плит 15 м²/м³. Запасы цветных ангидридов оценены

в следующих объмах, в тыс. M^3 : по категории $C_1 - 20,6$, по категории $C_2 - 59,2$; по участку Левобережный по категории класса $C_2 - 1155,6$ (карта 3.2).

Карта 3.2 – Размещения нерудных материалов на территории Ошской области* *Источник: составлена автором

Для увеличения ресурсной базы аналогичного сырья могут быть месторождения гипса и гипса-ангидрида в Алайском районе – Палеогеновое I с прогнозными ресурсами 9750 тыс. м³, Палеогеновое II – 15300, Колдук – 2300, Терексуу – 1125 тыс. м³ [71].

Месторождение Кашкасуу представляет собой розовые доломитовые известняки с кондиционной механической прочностью в объеме 4 млн м³.

В Джалал-Абадской области производством нерудных материалов занимается 101 предприятие, в том числе 41 песчано-гравийное, 29 предприятий

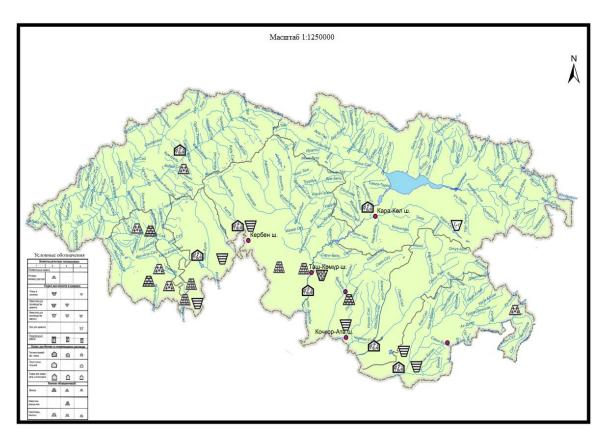
по разработке суглинка, 31 предприятие по разработке гранита, известняка, гипса и др [85].

На территории Джалал-Абадской области установлено или выявлено 45 месторождений и проявления облицовочных камней нерудного происхождения. Но из всех месторождений подробно изучены и используются три месторождения - Бозбуто, Акташ II, Арым I, II. Кроме того, предварительная геологоразведка проведена на месторождение Чичкан; специализированные исследования проводились на 22 месторождениях и проявлениях в масштабе 1:5000 - 1:10000. Периодически осваиваются два месторождения - Арым I и II и Акташ II [72].

На месторождении Бозбутоо продуктивными являются черные мраморизированные известняки, темно-серые и черные конгломератные брекчии и серые известняки. Породы из черного известняка и конгломерата представляют собой высокодекоративный материал, отвечающий требованиям ГОСТ по своим физико-механическим свойствам.

Выход товарных блоков по месторождению составляет: 35,9% по мамайской свите и 23,4% по улугской свите. Утвержденное производство плит толщиной 25 мм Запас 7,5 м 2 /м 3 : для карьера первой очереди (черные мраморизированные известняки) по категорям В+С $_1$ объемом 462 тыс. м 3 ; С $_2$ – 116 тысяч кубометров; для вторичных карьеров категории С $_1$ (серый мраморный известняк и конгломерат брекчии) составляет 2,269 млн м 3 . Участок карьера первой очереди месторождения предназначена для промышленного освоения. Запасы включены в сводный баланс Государственной геологической службы. [75].

Объем запаса месторождения известняков-ракушечников Акташ II, по сумме категорий $A+B+C_1$ составляет 2282 тыс. m^3 . По физико-механическим свойствам продукции известняка-ракушечника соответствуют требованиям ГОСТ и представляют собой строительные блоки и неполированные материлы. Разрабатываемые плиты составяют 57,7 %, неполированные плиты - 19,7 m^2/m^3 .

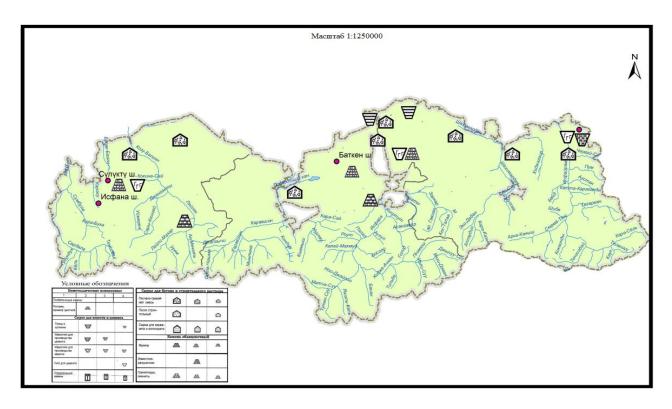

Месторождения мрамора Арум представлены двумя обособленными участками Арум I и Арум 2. Среди объектов мрамора выявлены несколько цветовых разновидностей - белые, серые, серо-голубые, цветной разноцветной структуры.

Некоторые части мраморов скарнированы и офитизированы. Производство кондиционных блоков по месторождению составляет 21%; производство полированных плит толщиной 25 мм составляет 11,3 м²/м³, производство плит толщиной 20 мм составляет 14,05 м²/м³. В 1976 г. проведено детальное изучение и утверждены запасы класса A+B+C₁ на участке Арым I, и оценены в 85,5 тыс. м³, на участке Арам 2 оцениваются в 717 тыс. м³. Участки Арыма 1 и 2 находятся в стадии разработки.

Месторождение мрамора по категории C_1 на площади достигает 78 тыс. M^3 .

Предварительно разведанное Чичканское месторождение, состоит из небольших участков сложенные высокодекоративными мраморами; на участке Центральный предусматривается разработка блоков только V группы.

Помимо гранитов, обнаруженных в Кочкор-Ате, Кайнаме, Мискене, Туюке и Жалгыз-Арче, рекомендуются освоение буровато-темно-зеленые порфириты на месторождении Маркай, цветные конгломераты Чаначского месторождения и высокодекоративные известняковые брекчия Падыша-Атинского месторождения. Все эти месторождения обладают огромными ресурсами для переработки сырья. Специальные исследования проведены для различных месторождений с перспективными запасами минерального сырья, обнаруженных в ходе геолого-съемочных изысканий (карта 3.3).



Карта 3.3 – Размещения нерудных материалов на территории Джалал-Абадской области*

К вышеуказанным относятся также освоение белого мрамора в долине р. Карасу, черные и темно-серые массивы диабаза в месторождении №26, декоративные гнейсовые образования №114, красноокрашенные граниты месторождения №97, красновато-пятнистые граносиениты месторождения №101 и т.д.

Предприятий в Баткенской области, занимающихся разработкой нерудных материалов, составляет 79, которые включают в себя: 26 предприятий занимающихся песчано-гравийной смеси, 11 предприятий разработкой суглинка, 15 предприятий разработка песка, 27 других предприятий разрабатывающих — гранит, известняк, гипс и т.п [85]. На карте 3.4 показана размещение осваиваемых нерудных полезных ископаемых на территории Баткенской области.

^{*}Источник: составлена автором

Карта 3.4 – Размещения нерудных материалов на территории Баткенской области*

*Источник: составлено автором

По данным Кыргызской геологической службы осуществляется разработка глин и суглинков на отдельных участках крупных месторождений Мирза-Акинское, Ошское, Достукское и Джалал-Абадское. Соответственно на этих территориях функционируют крупные производства по производству жженного кирпича. Рядом с карьерами по добыче суглинков обустраиваются промышленные производства по выпуску кирпичей. Вся деятельность этой системы сопровождается значительными воздействиями и последствиями на атмосферный воздух, земельные водные образованием И ресурсы, размещением твердых отходов в окружающей среде [29].

Из существующих более 500 крупных и мелких месторождений глин и глинистых пород, детально изучено всего около 10%, запасы которых достигают 247 млн т.

Общие запасы месторождений песчано-гравийных материалов Кожояара, Хаттхата и Актерека достигают 117,2 млн м³. В Баткенской области выявлено 28 месторождений и проявлений облицовочных материалов [57], детально изучены месторождения известняков Шурабского I и проведены первые исследования мраморных месторождений Коксу (участки Левобережный и Лейлек). Разработки вышеуказанных месторождений в области не производится.

Осадочные породы и их формирование получила широкое развитие на территории Баткенской области. Месторождение Шураб I (второй участок) сложена из мраморизованного светло-серого и темно-серого известняка. По физико-механическим свойствам известняк соответствует требованиям ГОСТ 9479-84, морозостоек, хорошо полируется, декоративен, имеет оригинальную окраску. Запасы по категории определены объемом в 504 тыс. м³, дальнейший прирост запасов не ограничен.

Левобережный участок месторождения Коксу сложена из белого мрамора. В состав мрамора входит почти исключительно монокристаллический кальцит. Изготовление 30% блоков с 1 по 4 группы составляют полированные плиты - 12 ${\rm M}^2/{\rm M}^3$. Кромки плит ломаются при добыче из-за слабой связи зерен кальцита. Запасы на участке Левобережный по категории B+C₁ содержит 2 546,9 тыс. ${\rm M}^3$; ${\rm C}_2$ - 778 тыс. ${\rm M}^3$.

Для специальных поисково-оценочных работ рекомендуется использовать менее изученные материалы, которые по предварительным данным могут быть использованы в качестве облицовочных материалов. Среди них розовые и кремовые известняки Дарбазасайского месторождения, обожженные брекчированные известняки Бешбалыкской свиты, зебровые доломиты Адыракоу, серо-коричневые известняки месторождения месторождений Ходжатуш и Рават. Предполагаемые запасы ресурсов по этим направлениям могут удовлетворить потребности региона. Пять известняково-ракушечниковых объектов с крупными плановыми запасами (Чуинчи, Коктобе, Оюлма, Баткенская, Даргуна) подлежат поисково-оценочным работам и специальным

исследованиям, которые рекомендуются для дальнейшего геологического изучения.

Воздействие добычи сырья из нерудных материалов на окружающую среду. В Кыргызской Республике имеется 9 месторождений гипса, общий баланс месторождений промышленной категории составляет 36,0 млн т.

Ресурсы известняка, выявленные и сгруппированные по отраслям промышленности по 5 месторождениям, составили 21,8 млн т, а общие ресурсы глины и суглинков по отраслям промышленности составили 444,5 млн м³. Все месторождения нерудных материалов разрабатываются горными работами, механическим рыхлением горных пород, удалением плодородных почв и слоев растительности. В таблицах приложения данной диссертации представлено ожидаемое воздействие нерудных месторождений на окружающую среду.

Природоохранным законодательством Кыргызской Республики предусмотрено плата за специальное природопользование. Эти платежи состоят из использования природных ресурсов, платы за загрязнения окружающей среды и другие негативные воздействия на природу. Плата за загрязнения окружающей среды это выбросы, сбросы загрязняющих веществ, размещение отходов и другие виды загрязнения негативного воздействия на природу. В соответствии Постановлением Правительства Кыргызской Республики №559 от 19.09.2011 года утверждена «Методика определения платы за загрязнения окружающей среды в Кыргызской Республике» и ППКР №625 от 10.09.2015 года утверждена «Ставки платы за загрязнение окружающей среды в Кыргызской Республике».

По предварительным расчетам нормативных платежей за загрязнение окружающей среды от всех нерудных месторождений может составит 1 760 млн сом/год, в том числе:

-платежи за выбросы в атмосферный воздух от стационарных источников - 461 тыс. сом (0,03%);

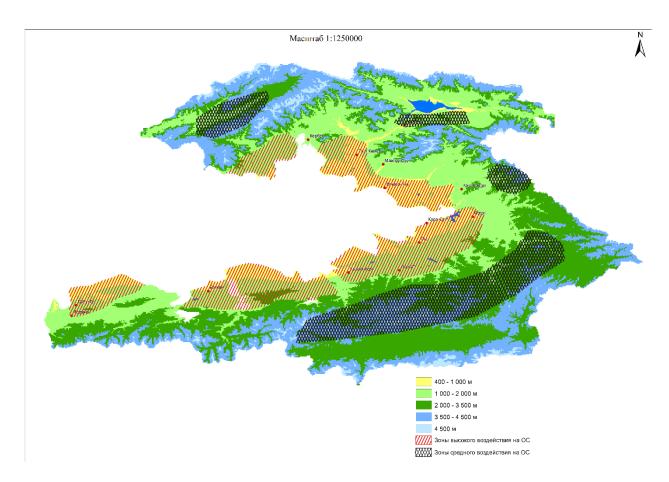
-платежи за выбросы в атмосферный воздух от передвижных источников (использования Γ CM) – 6, 020 млн сом (0,34%);

-платежи за размещение твердо бытовых отходов - до 960 млн сом (0.055%);

-платежи за вывоз промышленных отходов на полигон и размещение горных отвалов в окружающей среде -1.752.559 тыс. сом (99,5%).

Вся деятельность, связанная с добычей и использованием полезных ископаемых, затрагивает определенные компоненты природной среды.

Выбросы в атмосферный воздух при добыче и переработке сырья соответствуют выбросам от установок по переработке руды (транспорт, дробление, измельчение сырья) по основной переработке. В различных технологических процессах, где вода используется для увлажнения сырья, полностью исключен сброс сточных вод в атмосферу. Вся деятельность по добыче полезных ископаемых снижает воздействие на водные ресурсы за счет внедрения оборотных систем водоснабжения.


Помимо выброса вредных веществ работающей в шахтах спецтехникой и транспортом, пыль, собираемая при складировании на полигонах, и сырье, полученное при хранении на полигонах, также вызывают значительное загрязнение атмосферного воздуха.

Исследования показали, что наибольшее загрязнения в результате освоения нерудных полезных ископаемых происходит на долииных территориях рассматриваемой территории. Но воздействие на ОС достигает и высокогорные районы при этом их влияние происходит медлленно, как бы не заметно.

Нами были выделены ареалы распространения загрязнения природной среды в результате освоения нерудных месторождений южного региона Кыргызстана по высотным зонам. В основном их можно рассматривать как:

- зоны интенсивного воздействия;
- зоны умеренного воздействия.

Зоны действия охватывает примерно 1/3 части от общей площади рассматриваемого региона (карта 3.5).

Карта 3.5 – Распространение нерудных месторождений и их загрязнение по высотным зонам южного региона Кыргызстана*

*Источник: составлена автором

На карте 3.5 автором был разработан схема распространения нерудных месторождений и их влияние на ОС при освоении по высотным зонам южного региона Кыргызстана.

Разработка нерудных месторождений сопровождается выводом отдельных территорий из хозяйственного использования, нарушением орографического строения, нарушением режима течения поверхностных вод, а используемые машины и агрегаты являются источниками физического, химического загрязнений – которые отрицательно влияют на ареал распространения растений и животных, воздействует на близлежащие территории, сопровождающиеся вредным воздействием шумов, вибраций, дымовых и газовых выбросов.

3.3. Воздействие деятельности нерудных предприятий на воздушную среду

Источники выбросов загрязняющих веществ в атмосферу разделяются на неорганизованные (рассредоточенные) и организованные (концентрированные). К первой группе (неорганизованные) относятся: ветровая эрозия (дефляция) - выбросы с нарушенных участков земной поверхности, включая добычу полезных ископаемых, полигоны, складирование по технологической производственной цепочке, буровзрывные работы, бурение, транспортировку, погрузку и операции по перемещению нерудных материалов на склады и т.д. Неорганические источники выбросов охватывают относительно большую территорию.

Большое количество пыли выделяется при отвалообразовании и складировании каменных отходов (укладке камней на свалки, приводящие к загрязнению их поверхностей), а также при выемке нерудных месторождений (измельчение и сортировка коллекторов, базы автотранспортной техники). Почти все месторождения твердых полезных ископаемых имеют сложный состав и состоит из множества различных минералов и химических элементов, которые являются основными, а также сопутствующими компонентами других родственных минералов (сочетаемых или скоординированных).

Народное хозяйство все больше нуждается в нерудных материалах и эти потребности растут с ростом количества населения, которая проявляется с увеличением потребности в энергии, топливе, полезных ископаемых, строительных материалов и других материальных ресурсов, что требует быстрого роста научных и производственных ресурсов.

В результате хозяйственной деятельности в воздух выбрасываются бенз(а)пирен, ртуть, мышьяк, свинец, кадмий, фенол, аммиак, хлор и другие вещества.

Отбор проб выбросов и прямые инструментальные исследования проводились на известных источниках выбросов пыли. Отбор проб осуществлялся с помощью устройства, позволяющих максимально сохранять состав пробы по пылевой фракции или бумажного фильтра с пористостью АФА с размерами проб 0,3-0,5 мкм варьировались от 5 до 20 минут при расходе 20 л/мин (в зависимости от интенсивности пылевыделения).

Пробы отбирали как можно ближе ко входу в источник (зона инокуляции). Для получения точных результатов пробы отбирали из каждого источника в трехкратной повторяемости. Результатом является общая выборка (среднее значение), из которой взяты все остальные измерения.

Массовую долю (в процентах) РМ2,5 и РМ10 определяли путем сбора пыли разного размера.

Установлено, что мелкодисперсные частицы практически повсеместно входят в состав отходов. Пример полученного графика показана на рис. 3.2.

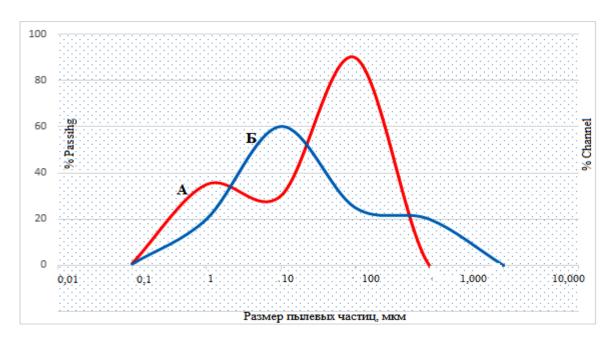


Рисунок 3.2 - Распределения частиц по размерам в пылевых выбросах предприятия по разработке строительных материалов*

a – пересыпка песка на конвейер; δ –пересыпка щебня на конвейер.

^{*}Источник: составлена автором

В то же время структура порошковой дисперсии очень стабильна для отдельных производственных процессов. Это позволяет рассматривать полученные данные как основу для перечня источников выбросов и затем определять максимально допустимые нормы выбросов, удовлетворяющие условиям распоряжения Указа Президента Кыргызской Республики №26 от 8 февраля 2021 года «О Правительстве Кыргызской Республики» в соответствии со статьями 10 и 17 Конституции Кыргызской Республики.

На территории южного региона Кыргызстана подавляющая количество горнодобывающих предприятий являются мелкими и часто происходит их исчезновение или банкротство в результате которых вопрос охраны окружающей среды остается открытым. При освоении нерудных полезных ископаемых загрязнение окружающей среды в основном идет на атмосферу.

Для исследования вредных выбросов были подвергнуты нижеследующие промышленные предприятия, добывающие нерудные полезные ископаемые:

-ОсОО «Акман-Базар-Коргон кыш заводу». Предприятие расположено на участке Тулку-Жар Акманского с/о, Базар-Коргонского района. Рельеф участка пологий, грунты суглинки. На данном предприятии имеется 4 источника выбросов ЗВ в атмосферу (табл. 3.3).

Таблица 3.3 — Выбросы загрязняющих веществ в атмосферу (OcOO «Акман-Базар-Коргон кыш заводу») *

Номер	Наименова	загрязняющее	факт	ический	OT	ПДВ,	ПДВ,
источни	ние	вещество	ВЬ	брос	неорган	г/сек	т/год
ка	источника		г/сек г/сек		И		
	выбросов				зованны		
					X		
					источни		
					ков		
1	2	3	4	5	6	7	8
№ 1	склад угля	пыль угля	1,92	0,007	0,007	1,92	0,007
№2	карьер	пыль	3,37	9,71	9,71	3,37	9,71
		неорганическ					
		ая					

№3	Печь	твердые	0,209	3,62	3,62	0,209	3,62
	обжига	частицы					
		диоксид серы	0,118	2,04	2,04	0,118	2,04
		оксид	0,212	3,66	3,66	0,212	3,66
		углерода					
		диоксид азота	0,003	0,052	0,052	0,003	0,052
	Сварочный	сварочный	0,0144	0,0027	0,0027	0,0144	0,0027
№4	пост	аэрозоль				2	
		двуокись	0,0014	0,000275	0,000275	0,0014	0,0002
		марганца				6	7
		фтористый	0,002	0,000382	0,000382	0,0020	0,0003
		водород				4	8
	Всего:			19,0923	19,0923		19,092
							3

^{*}Источник: составлена автором

Добыча глинистого сырья производится в карьере экскаватором, далее автосамосвалами подается в приемный бункер. В качестве выгорающей добавки в шихту водиться уголь. Уголь поступает автосамосвалами. Разгрузка угля производят на открытой площадке склада. Из склада угля подается в бункер для изготовления кирпича. Обжиг кирпича ведется в печи. В качестве топлива для обжига кирпича используется уголь. Для создания необходимого разрежения в печи устанавливают вентилятор. Каждая камера снабжена отдельной системой по которым отбирается дымовые газы. Из рабочей камеры по каналам в подаче печи отработанные газы за счет искусственной тяги поступает в дымовой канал и посредством отсасывающих вентиляторов выбрасывается в атмосферу.

-OcOO «Кыргыз Нур». Предприятие расположено на участке Курук-Сай Барпинского а/а, Сузакского района. Рельеф участка пологий, грунты суглинки.

Площадь, занимаемая предприятием, составляет 1,0 га, под строительство кирпичного завода отведен земельный участок площадью 0,5 га. К производственной площадке примыкает карьер суглинков. Добыча глинистого сырья аналогично к ОсОО «Акман-Базар-Коргон кыш заводу» и соответственно вредные выбросы тоже (табл.3.4).

Таблица 3.4 — Выбросы загрязняющих веществ в атмосферу (ОсОО «Кыргыз Нур») *

номер	Наименова	загрязняющее	факти	 гческий	ОТ	ПДВ,	ПДВ,
источ	ние	вещество	-	брос	неорган	г/сек	т/год
ника	источника		г/сек	г/сек	И		
	выбросов				зованны		
	_				X		
					источни		
					ков		
1	2	3	4	5	6	7	8
1	склад угля	пыль угля	1,92	0,007	0,007	1,92	0,007
2	карьер	ПЫЛЬ	3,37	9,71	9,71	3,37	9,71
		неорганическая					
3	печь	твердые	0,209	3,62		0,209	3,62
	обжига	частицы (зола)					
		диоксид серы	0,118	2,04		0,118	2,04
		оксид углерода	0,212	3,66		0,212	3,66
		диоксид азота	0,003	0,052		0,003	0,052
4	Сварочный	сварочный	0,0144	0,0027	0,0027	0,01442	0,002
	пост	аэрозоль	2				7
		двуокись	0,0014	0,000275	0,000275	0,00146	0,000
		марганца	6				275
		фтористый	0,0020	0,000382	0,000382	0,00204	0,000
		водород	4				382
	E		19,0923			19,09	
							23

^{*}Источник: составлена автором

В исходные данные для расчета принят годовой фонд рабочего времени оборудования, характеристики источников выбросов, количество использованного топлива.

-ИП «Алибаева М.А.» расположенный на участке слияния рек Кугарт и Чангет-Сай, Сузакского айылного аймака Сузакского района Жалал-Абадской области. Сырьевой служат месторождения: «Нижний Сузак-2» и «Нижний Сузак-4». Балансовые запасы составляют 24 тыс. м³.

Все выполняемые работы представляют собой низкие наземные неорганизованные источники выброса загрязняющих веществ (ЗВ) в атмосферу, рассеивание от которых происходит в пределах карьера (табл. 3.5).

Таблица 3.5 — Выбросы загрязняющих веществ в атмосферу (ИП «Алибаева М.А.») *

номе р	Наименовани е источника	загрязняюще е вещество	_	ический лброс	от неорг. источ-в,	ПДВ, г/сек	ПДВ, т/год
исто	выбросов	0 202,00120	г/сек	г/сек	т/год	170011	7734
ника							
		Карье	р «Нижні	ий Сузак-2»			
1	Выемочно погрузочные работы	пыль неорганическ ая (SiO ₂ от 20 до 70 %)	0,1266	0,8	0,8	0,1266	0,8
2	Движение автотранспор та	пыль неорганическ ая (SiO ₂ от 20 до 70 %)	0,1123	0,7115	0,7115	0,1123	0,7115
3	Разгрузка горной массы	пыль неорганическ ая (SiO ₂ от 20 до 70 %)	1,6925	0,8043	0,8043	1,6925	0,8043
4	Горная	Окись		3,795	3,795		3,795
	техника	углерода Углеводород ы		1,1385	1,1385		1,1385
		Двуокись азота		1,518	1,518		1,518
		Сажа		0,5882	0,5882		0,5882
		Сернистый газ		0,759	0,759		0,759
		Бензапирен		0,000012	0,000012		0,000012
	<u> </u>	Карье	р «Нижні	ц ий Сузак-4»	l	I	l
5	Выемочно погрузочные работы	пыль неорганическ ая (SiO ₂ от 20 до 70 %)	0,0633	0,4	0,4	0,0633	0,4
6	Движение автотранспор та	пыль неорганическ ая (SiO ₂ от 20 до 70 %)	0,1014	0,6424	0,6424	0,1014	0,6424
7	Разгрузка горной массы	пыль неорганическ ая (SiO ₂ от 20 до 70 %)	0,8435	0,4008	0,4008	0,8435	0,4008
8	Горная техника	Окись углерода		1,897	1,897		1,897
		Углеводород ы		0,5692	0,5692		0,5692

		Двуокись		0,759	0,759		0,759
		азота					
		Сажа		0,2941	0,2941		0,2941
		Сернистый		0,3795	0,3795		0,3795
		газ					
		Бензапирен		0,0000061	0,0000061		0,0000061
9	ДСУ	пыль с	52,92	31,7564	31,7564	52,92	31,7564
		содержанием					
		SiO ₂ от 20 до					
		70 %					
10	Сварочный	Сварочная	0,0144	0,0027	0,0027	0,0144	0,0027
	пост	аэрозоль	2			2	
		Оксиды	0,0014	0,000275	0,000275	0,0014	0,000275
		марганца	6			6	
		Фтористый	0,0020	0,000382	0,000382	0,0020	0,000382
		водород	4			4	
	Всего:			47,216275	47,216275		47,216275
				1	1		1

^{*}Источник: составлена автором

Основная масса частиц размером менее 200 мкм осаждается под воздействием гравитационных сил в непосредственной близости от источника пыления. В связи с тем, что горные работы ведутся в открытом русле реки, рабочие площадки либо открыты с четырех сторон, обеспечивая интенсивную естественную вентиляцию рабочих площадок благодаря господствующим ветрам вдоль речной долины.

Выбросы при работе горнотранспортной техники сосредоточены в пределах рабочих площадок (карьер) и дорог, задействованных для транспортировки горной массы.

-OcOO «Акнур» занимается добычей месторождения «Благовещенка» находящейся на территории Таш-Булакского а/а Сузакского района Жалал-Абадской области, в пойме реки Кок-Арт.

Все выполняемые работы представляют собой низкие наземные неорганизованные источники выброса загрязняющих веществ (3B) в атмосферу, рассеивание от которых происходит в пределах карьера (табл. 3.6).

Таблица 3.6 – Выбросы загрязняющих веществ в атмосферу (OcOO «Акнур»)*

номер	Наименова	загрязняющее	фактиче	ский выброс	ОТ	ПДВ	ПДВ,
источ	ние	вещество	г/сек	г/сек	неоргани	,	т/год
ника	источника				зованных	г/сек	
	выбросов				источник		
	_				ОВ		
1	2	3	4	5	6	7	8
1	Выемочно	ПЫЛЬ	0,212	1,908	1,908	0,21	1,908
	погрузоч	неорганическая				2	
	ные работы	(SiO ₂ от 20 до					
	_	70 %)					
2	Движение	пыль неоргани	0,1123	1,0107	1,0107	0,11	1,010
	автотранс	ческая				23	7
	порта в	(SiO ₂ ot 20					
	пределах	до 70 %)					
	месторож	·					
	дения						
3	Горная	Окись		4,438	4,438		4,438
	техника	углерода					
		Углеводо		1,3314	1,3314		1,331
		роды					4
		Двуокись		1,7752	1,7752		1,775
		азота					2
		Сажа		0,6879	0,6879		0,687
							9
		Сернистый газ		0,8876	0,8876		0,887
							6
		Бензапирен		0,0000142	0,0000142		0,000
							0142
	E	Всего:		12,0388142	12,038814		12,03
					2		88142

^{*}Источник: составлена автором

Основная масса частиц размером менее 200 мкм осаждается под воздействием гравитационных сил в непосредственной близости от источника пыления. На расстоянии более 200-300 м от отвалов в воздухе присутствуют только пылевые частицы менее 10 мкм – витающая пыль.

В связи с тем, что горные работы ведутся в открытом русле реки, рабочие площадки либо открыты с четырех сторон, обеспечивая интенсивную естественную вентиляцию рабочих площадок благодаря господствующим ветрам вдоль речной долины.

-ОсОО «Чек-Сай». Земельный участок под дробильно-сортировочную установку и карьер ПГС расположено на нижнем участке реки Тентек-Сай, на территории Сакалдинского айылного аймака и Сайдыкумского айылного аймака. Рельеф участка относительно ровный с незначительным уклоном в южном направлении. Общая площадь участка составляет 29,1 га, из них на территории Сакалдинского а/а Ноокенского района – 18,7 га, Сайдыкумского айылного аймака Базар-Коргонского района - 10,4 га.

Во время освоения неурдного полезного ископаемого, производятся аналогичные виды работ с ОсОО «Акнур». На данном участке определено 6 источников загрязнения атмосферы (табл.3.7).

Таблица 3.7 – Выбросы загрязняющих веществ в атмосферу (OcOO «Чек-Сай»)*

номер	Наименова	загрязняющее	фактиче	ский выброс	ОТ	ПДВ,	ПДВ,
источ	ние	вещество	г/сек	г/сек	неоргани	г/сек	т/год
ника	источника				зованных		
	выбросов				источник		
					ОВ		
1	2	3	4	5	6	7	8
1	Выемочно	пыль	0,424	1,6058	1,6058	0,424	1,605
	погрузочн	неорганическая					8
	ые работы	(SiO ₂ от 20 до					
		70 %)					
2	Движение	пыль	0,1123	0,4253	0,4253	0,1123	0,425
	автотрансп	неорганическая					3
	орта	(SiO ₂ от 20 до					
		70 %)					
3	Разгрузка	пыль	3,3712	1,602	1,602	3,3712	1,602
	горной	неорганическая					
	массы	(SiO ₂ от 20 до					
		70 %)					
4	Горная	Окись углерода	1,472	5,576	5,576	1,472	5,576
	техника	Углеводороды	0,442	1,673	1,673	0,442	1,673
		Двуокись азота	0,589	2,230	2,230	0,589	2,230
		Сажа	0,228	0,864	0,864	0,228	0,864
		Сернистый газ	0,294	1,115	1,115	0,294	1,115
		Бензапирен	0,0000	0,0000018	0,0000018	0,0000	0,000
			0048			0048	0018
5	ДСУ	пыль с	52,92	42,291	42,291	52,92	42,29
		содержанием					1
		SiO ₂ от 20 до					
		70 %					

6	Сварочный	Сварочная	0,0144	0,0027	0,0027	0,0144	0,002
	пост	аэрозоль	2			2	7
		Оксиды	0,0014	0,000275	0,000275	0,0014	0,000
		марганца	6			6	275
		Фтористый	0,0020	0,000382	0,000382	0,0020	0,000
		водород	4			4	382
	Всего:			57,385459	57,385459		57,38
							5459

^{*}Источник: составлена автором

-ОсОО «Аска Стоун» разработка площади известняка-ракушечника Таш-Акур. Административно площадь «Таш-Акур» относится к Сузакскому району Жалал-Абадской области. Площадь «Таш-Акур» располагается на слабо всхолмленном плато левобережья реки Чангет в 2-х км к югу от русла.

Все выполняемые работы представляют собой низкие наземные неорганизованные источники выброса загрязняющих веществ (3B) в атмосферу, рассеивание от которых происходит в пределах карьера (табл.3.8).

Таблица 3.8 – Выбросы загрязняющих веществ в атмосферу (OcOO «Чек-Сай»)*

номер	Наименова	загрязняющее	фактиче	ский выброс	ОТ	ПДВ,	ПДВ,
источ	ние	вещество	г/сек	г/сек	неоргани	г/сек	т/год
ника	источника				зованны		
	выбросов				X		
					источни		
					ков		
1	2	3	4	5	6	7	8
1	Выемочно-	пыль	0,392	0,5828		0,392	0,582
	погрузочн	неорганическая					8
	ые работы	(SiO ₂ от 20 до					
		70 %)					
2	Движение	ПЫЛЬ	0,0652	0,1882		0,065	0,188
	автотрансп	неорганическая				2	2
	орта	(SiO ₂ от 20 до					
		70 %)					
3	Бульдозерн	ПЫЛЬ	9,5173	2,6039		9,517	2,603
	ые работы	неорганическая				3	9
		(SiO ₂ от 20 до					
		70 %)					
4	Резка	ПЫЛЬ	0,405	4,7589		0,405	4,758
	камня	неорганическая					9
	боровой	(SiO ₂ от 20 до					
	машиной	70 %)					

5	Горная	Окись углерода	2,081	2,081
	техника	Углеводороды	0,6243	0,624
				3
		Двуокись азота	0,8324	0,832
				4
		Сажа	0,3226	0,322
				6
		Сернистый газ	0,4162	0,416
				2
		Бензапирен	6,6592*10 ⁻⁶	6,659
				2*10 ⁻⁶
	Всего:			12,41
				03

^{*}Источник: составлена автором

Для проведения разработки известняка ракушечника на участке «Таш-Акур» необходимо проведения определенного объема земляных работ, проведение которых окажет воздействие на атмосферный воздух. Источниками воздействия на атмосферный воздух при проведении разработки служат работы по перемещению, погрузке и перевозке.

Во всех выше исследованных промышленных участках добыча нерудного сырья производится в карьере экскаватором, далее автосамосвалами идет транспортировка горной массы.

Во время разработки производятся следующие виды работ с применением автотранспорта и горной техники:

- выемочно-погрузочные работы;
- транспортировка горной массы;
- разгрузка горной массы.

Все выполняемые работы представляют собой низкие наземные неорганизованные источники выброса загрязняющих веществ (ЗВ) в атмосферу, рассеивание от которых происходит в пределах карьера и доходит до ближайшие населенные пункты.

Расчет дисперсии (определение приземных концентраций) проводили стандартными методами и программами определения степени воздействия веществ - Унифицированная программа расчета загрязнения атмосферы

(УПРЗА) «Эколог» версия 4.50.4), реализирующих ("Методические указания по оформлению и содержанию проектов предельно-допустимых выбросов в атмосферу (ПДВ) для предприятия" утвержденные приказом Министерством экологии и чрезвычайных ситуаций) Кыргызской Республики, 10 мая 2005 г. № С232).

Основной размер зерна исследуемого образца составляет от 4 до 30 мкм. Наибольшая фракция частиц составляет 55 мкм.

На рис. 3.3 представлена кривая распределения частиц мраморной пыли. Приведенный график показывает, что исследуемая мраморная пыль имеет широкий гранулометрический состав. Основное распределение фракций размером 1- 40 мкм, то есть материал является тонкодисперсным.

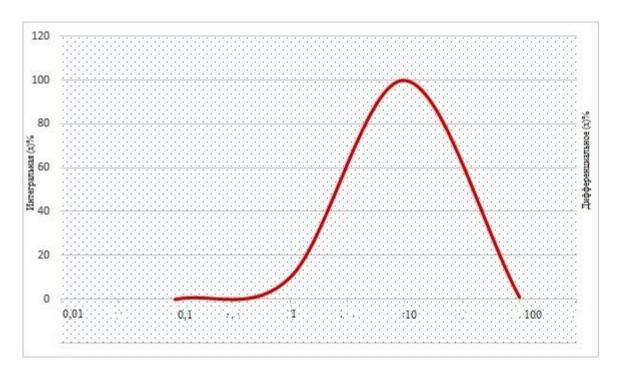


Рисунок 3.3 — Распределение частиц по размерам в образце мраморной пыли* *Источник: составлено автором

Загрязнение атмосферы при взрывных работах достигает максимальные значения, так как на данном этапе работы происходит неконтролируемый выброс. Зоны пылевого загрязнения акватории карьера взрывными работами при

добыче мраморного оникса показана на рис. 3.4.

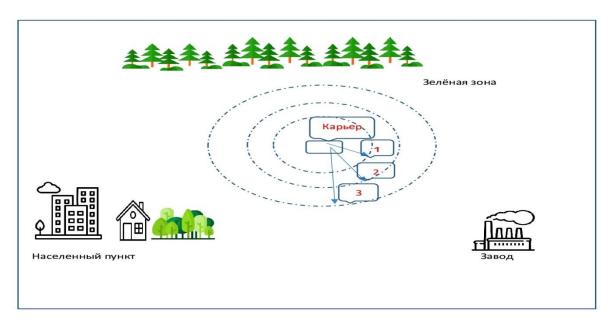


Рисунок 3.4 - Зоны пылевого загрязнения акватории карьера взрывными работами при добыче мраморного оникса*

1- опасная зона (500 м), 2- зона средней опасности (2000 м), 3- зона превышения ПДК (5000 м).

*Источник: составлена автором

Природоохранные меры по предупреждению формирования пыли и газов, а также подавление или сокращение вблизи источника выбросов является наиболее важным и существенным способом борьбы с ними. Например, применение качественных методов и установок пылеуловителей на буровых установках позволяет значительной степени снизить выбросы пыли с 2000 до 35 мг/с [86].

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение из карьер извести показана на табл. 3.9.

Таблица 3.9 – Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение из карьер извести*

Название	Материал	Количество	выбросов	ПДК	Средне	Кла	Значение
работ	распростране			Макс.	суточн	cc	КОП
	ния			разова	ая	опас	
				я	ПДК	ност	
						И	
		г/сек	т/год	мг/м ³	мг/м ³		М/ПДК**
							a
Разработка	Неорганическ	0,00064	0,00394	0,3	0,1	3	39,99
карьера	ая пыль,	0,0577	0,01872				
извести	материал	0,0493	1,214				
	включающая	0,27376	0,3158				
	диоксид	0,36974	0,08939				
	кремния	0,1215	2,36				
	%: 20-70						
Итоги, посл	Итоги, после выполнения		3,9994				40,0
всех видов д	всех видов деятельности:						

^{*}Источник: составлена автором

Примечания: 1. В последней колонке: «М» - выбросы загрязняющих веществ, т/год; "ПДК" - ПДК. или ПДКм.р. или ОБУВ; «а» - постоянная, учитывает класс опасности загрязняющих веществ; 2. Метод сортировки: сортировать по коду в порядке возрастания (столбец 1).

Взрывные работы сопровождаются выбросами загрязняющих веществ образующиеся от используемых взрывчатых материалов и неорганической пыли. Неорганическая пыль в процессе взрывных работ дополняются к общему выбросу пыли на расстоянии 150-300 метров, в окрестностях мраморного карьера ежегодно оседает пыли соотвественно 607 и 469 кг/час.

К источникам вредных выбросов, загрязняющих воздух при эксплуатации карьера относятся:

-скрышные бульдозерные работы;

- -работа погрузчика вскрышных пород;
- -работа автосамосвалов для перевозки вскрышных пород;
- -отвальные работы;
- -добыча и погрузка горной массы в самосвалы;
- -транспортные работы по перевозке полезного ископаемого;
- -работа спецтехники (не нормируется).

При выемочно-погрузочных работах в атмосферный воздух выбрасывается пыль неорганическая пыль, содержащая двуокись кремния SiO₂ от 20 до 70 %. При работе горной техники от двигателя внутреннего сгорания в атмосферный воздух выделяются следующие загрязняющие вещества: диоксид азота, оксиды азота, углерод (сажа), углеводороды, диоксид серы, диоксид углерода, бенз(а)пирен. Годовые выбросы пыли от источников загрязнения карьера суглинков «Тюлейкен» приведены в табл. 3.10.

Таблица 3.10 – Годовой выброс мелкой пыли из источников загрязнений*

No	Наименование источника	Загрязняющее	Выброс за	агрязняющего
	выбросов	вещество	Вел	щества
			г/сек	т/год
1	Выемочно- погрузочные работы	пыль неорганическая (SiO ₂ от 20 до 70 %)	11,53	5,06
2	Склад сырья	пыль неорганическая (SiO ₂ от 20 до 70 %)	0,42	0,017
3	Формовочный цех	пыль неорганическая (SiO ₂ от 20 до 70 %)	0,35	0,35
	Всего выбросов по источникам 1,2,3		12,3	5,58

4	При дроблении камня	пыль неорганическая	-	0,085
		(SiO ₂ от 20 до 70 %)		
5	При помоле	пыль неорганическая	-	1,25
6	При ручной загрузке в мешки	пыль неорганическая	-	0,04
	Всего выбросов по источникам 4,5,6			1,375
	Всего по заводу		12,3	6,802

^{*}Источник: составлена автором

При перевозке вскрыши, наблюдается взаимодействие шин с дорожным покрытием и сдув загрязняющего материала в атмосферу с поверхности кузова распространяется неорганическую пыль, состоящую на 70-20 % из диоксида кремния.

В соответствии с санитарно-эпидемиологическими правилами и нормативами утвержденными ППКР «Об утверждении актов в области общественного здравоохранения» от 11.04.2016 года №201, приложения 3, раздел «Строительная промышленность» установлены санитарно-защитные зоны в соответствии с санитарной классификацией промышленных объектов и производств:

```
I класс – 1000 м;
```

II класс – 500 м;

III класс -300 м;

IV класс – 100 м.

Карьеры, предприятия по добыче гравия, песка, глины относятся к IV классу и санитарно-защитная зона составляет 100 метров. Производство щебня, гравия и песка, обогащение кварцевого песка относятся к III классу и санитарно-защитная зона составляет 300 м.

Как отмечалось выше, при добыче глины на Тюйлекенском грязевом руднике неорганизованные источники выбросов включают в себя: хранение сырья (пылевое загрязнение при погрузке глины; формовочные цеха (пыль, выделяемый при пересыпке сырья в вальцы грубого помола и помоле сырья); сушильные камеры, туннельная и кольцевая печи; гипсовые цеха; сварочные цеха; карьеры; гравийно-сортировочный завод; горная техника и автотранспорт.

Все выполняемые работы представляют собой низкие наземные неорганизованные источники выброса загрязняющих веществ (ЗВ) в атмосферу, рассеивание от которых происходит в пределах карьера.

В атмосферных результате метеорологических И процессов, выбрасываемые загрязняющие вещества оседают на поверхности земли или возвращаются в виде кислотных дождей, что негативно влияет на состояние окружающей исследуемого региона. Для снижения выбросов среды загрязняющих веществ на производствах по выпуску жженного кирпича необходимо применение природоохранных мероприятий в виде установки пылегазоочистных установок, пылеподавление, а также совершенствование технологического процесса.

По существующим результатам исследований ученых, выхлопные газы как диоксид серы, оксиды азота, диоксид углерода являясь токсичными соединениями создают риск для здоровья населения [5; 40].

По данным таблицы 3.11 видно, что выбросы атмосферы по всем трем областям не превышают установленных нормативов, соответственно воздействие нерудных компаний на воздушную среду не значительная и особых вредных последствий не оказывает, но это не означает, что не требуется принимать превентивные меры по охране окружающей природной среды.

Таблица 3.11 - Выбросы в атмосферу наиболее распространенных специфических загрязняющих веществ по территории в 2023 г.*

Территория	Предельно-допустимые	выбросы,	Фактические	выбросы,
	т/год		т/год	
Баткенская область	194,1		13,2	
Джалал-Абадская	5307,9		3256,5	
Ошская область	1581,2		893,7	

^{*}Источник: составлена автором

При открытой карьерной добыче нерудных полезных ископаемых, основным ситочником загрязнения атмосферы, кроме разрушения горных пород рассматриваем выхлопные газы горной техники, пыление дорог и вскрышных пород. Количественные характеристики выбросов загрязняющих веществ в общем объеме приведены в табл. 3.12.

Таблица 3.12 - Характеристика выбросов в атмосферный воздух при открытой карьерной добыче*

Материалы карьерной добычи	Валовый выброс пыли, т/год,	Выхлопные и автотрано Диоксид азота	•	ной техники Сажа	Пыление дорог и вскрыш %	Пыление сырьевое, %
Гипсы	266, 1827	49,66	24.59	2,58	1,23	0,82
Опоки	4,8912	15,71	14.08	2.13	57.01	2.00
Стекольные пески	84,7271	48,66	22.23	2,61	0,81	9.27
Керамические глины, суглинки	9,8265	12:25	11:39	1,81	31,96	36,27
Кирпичные глины, суглинки	1,5517	10,83	28,92	2,58	2,77	45,97

^{*}Источник: составлена автором

Гидроорошение перерабатываемой породы эффективно используется в качестве пылеподавления на территории разработки карьеров, результаты очистки составляют 85 %.

Расчетами распределения загрязняющих веществ в атмосфере определены максимальные концентрации загрязняющих веществ, выбрасываемых из всех источников, и расстояние, необходимое для достижения максимальных концентраций загрязняющих веществ. При проведении расчетов учитывалась одновременность технологических операций.

Основными выбросами нерудных материалов являются минеральная пыль и диоксид углерода.

С учетом специфики каждого предприятия по разработке нерудных месторождений следует предусматривать соответствующие меры по снижению выбросов.

3.4. Воздействие деятельности нерудных предприятий на водную среду южного региона Кыргызстана

Крупные горные реки в основном характеризуются быстрым и бурным течением. Малые реки обычно имеют пологие более ровные русла и широкие террасированными Каждая долины слоями. река характеризуется определенными установленными орографическими и гидрографическими обстоятельствами, определенными геоструктурными и геоморфологическими структурами, обуславливающими гидрогеологические условия питания и формирования водных ресурсов и качество подземных вод, а также многообразного уровня или степенью защищенности от деятельности горнодобывающих предприятий [18]. При разработке нерудных месторождений в южном регионе Кыргызстана используется открытый способ добычи полезных ископаемых. Процесс добычи открытым способом в горнодобывающей промышленности оказывает очень негативное воздействие на окружающую

среду. Это наносит значительный ущерб экологической ситуации в горнодобывающих районах. Вода, перекачиваемая искусственным орошением, загрязняет водоем солями, углеводородами и тяжелыми металлами. В низменных районах преобразование горных пород, вызванное откачкой воды из шахты, вызывает проседание и эрозию окружающего грунта.

В результате происходит значительное изменение гидродинамического состояния окружающей среды. Техногенные объекты, обнаруженные во время добычи полезных ископаемых, изменяют условия подземных вод и свойства выщелачивания горных пород. На объектах разработки и добычи полезных ископаемых развиваются ряд негативных процессов отношении окружающей среды, в том числе: загрязнение подземных вод верхних горизонтов; создание очагов концентрированной кислой воды; образование техногенных водоемов, содержащих токсичные воды; латентное загрязнение поверхностных водных объектов и т.д.

Таким образом, количество и загрязненность воды, используемой для добычи нерудных материалов, зависят от геологических и гидрогеологических характеристик полезных ископаемых, параметров карьера и в меньшей степени от географических и природно-климатических условий.

При обследовании объектов нерудных месторождений, на предмет загрязнения вод, с помощью гидравлического метода во многих из них наблюдалось значительное загрязнение водных ресурсов породной взвесью, в особенности в виде тонкодисперсной пыли.

При малом, незначительном количестве геологоразведочных работ (бурение неглубоких скважин) и освоении нерудных полезных ископаемых влияние на водные ресурсы минимальны, загрязняющие сточные воды течет лишь поверхностно, увлажняя почвенный слой и испаряясь.

При добыче нерудных полезных ископаемых происходит изменения водных режимов в следствии предварительного осущения карьера, переноса – реверсирования русла рек, обустройством дренажных канав. Различные

гидротехнические сооружения в районах добычи полезных ископаемых - траншеи, дамбы, водохранилища, а также резервуары - распределяют большую часть технических вод (особенно важно при проведении гидротехнических работ) и вызывают изменения в водных системах поверхностных и подземных вод.

Экспериментами [43] выявлено И установлено, ЧТО основным воздействием открытого способа разработки нерудных месторождений является прямое или косвенное разрушение естественных природных экосистем на локальной территории в пределах горнорудной концессии. За пределами карьера или горного отвода основное воздействие на атмосферный воздух обусловлено пылением и выбросами пыли и других загрязняющих веществ от взрывчатых веществ применяемых при вызравных работах, горной техники и автотранспорта в границах горного отвода. Загрязнение и изменение качественного химического состава подземных вод выявлено на участках производство которого производится ниже продуктивных пластов и на входе в местных конкретных дренажных сооружениях.

Характер и состав воздействия горнодобывающих предприятий на обращение с нерудными веществами в окружающую среду очень схожи и различаются по следующим признакам:

- химическое и физическое загрязнение окружающей среды (поверхностных вод) за счет химических изменений пыли, газов и сточных вод;
- уничтожение живых организмов экосистемы (биоморфологические нарушения) на территориях, отведенных под промышленные объекты, дороги, свалки и другие элементы местной инфраструктуры;
- управление водными ресурсами в регионе изменилось из-за загрязнения поверхностных и подземных вод.
- различные нарушения земной поверхности, снижение гидродинамического состояния горных пород и др.

Индекс загрязнения вод (ИЗВ) юга Кыргызстана (табл. 3.13) рассчитывается в баллах согласно методическим рекомендациям официальной комплексной оценки качества поверхностных вод по гидрохимическим показателям [1].

Таблица 3.13 – Качество вод рек южного региона Кыргызстана*

№	Наименование рек	ИЗВ в	в Класс	Состояние
		баллах	качества	
			воды	
1	Нарын	1.13	III	Умеренно
				загрязненный
2	Албуга	0,71	II	Чистая
3	Узунахмат	0,84	II	Чистая
4	Афлатун	0,98	II	Чистая
5	Карадарья	0,87	II	Чистая
6	Тар	1,73	III	Умеренно
				загрязненный
7	Яссы	1,29	III	Умеренно
				загрязненный
8	Зергер	1.11	III	Умеренно
				загрязненный
9	Куршаб	1,29	III	Умеренно
				загрязненный
10	Кугарт	1.12	III	Умеренно
				загрязненный
11	Чангет	1.14	III	Умеренно
				загрязненный
12	Тентексай	0,89	II	Чистая
13	Майлисуу	1,32	III	Умеренно
				загрязненный

14	Акбура	1,47	III	Умеренно
				загрязненный
15	Аравансай	0,90	II	Чистая
16	Исфайрамсай	0,76	II	Чистая
17	Шахимардан	0,80	II	Чистая
18	Cox	0,88	II	Чистая
19	Лейлек	0,90	II	Чистая
20	Сумсар	0,98	II	Чистая

^{*}Источник: Агентство по гидрометеорологии при МЧС КР.

Оценка качества воды основана на сравнении средней концентрации, зарегистрированной в месте измерения качества воды, с рекомендациями ПДК (по каждому отдельному ингредиенту).

Интегральный комплексный показатель характеризует загрязнение воды кумулятивным присутствием самых высоких концентраций шести измеренных загрязняющих веществ.

ИЗВ характеризует класс качества воды реки. Расчет ИЗВ производится по формуле:

ИЗВ_{для поверхностных вод}=
$$\Sigma C \cdot \Pi Д K/6$$
, (3.1.)

где С - среднегодовая концентрация измеряемого вещества; ПДК - установленная предельно допустимая концентрация загрязняющего вещества; 6 - строго лимитируемое количество измеренных показателей (1) (ингредиентов) с наибольшими концентрациями (независимо о того, превышают они ПДК или нет), включая показатели растворенного кислорода и БПК₅.

Анализ результатов наблюдения за гидрохимической сетью Кыргызстана и комплексная оценка изменения качества поверхностных вод южного региона Кыргызстана показывают, что качество воды в большинстве водоемов стабильно и имеет тенденции к загрязнению.

Химический состав воды сохраняет стабильный уровень основного компонента ионообразования.

Проникновение загрязняющих веществ в природу будет продолжаться и в ближайшие годы. Всегда необходимо оценивать состояние вод под влиянием деятельности человека.

На территории южного региона Кыргызстана основными источниками загрязнения природных вод являются сельскохозяйственные и промышленные предприятия [97].

Речные воды южного региона Кыргызстана относятся ко второму (чистые) и третьему (умеренно загрязненные) классам качества.

Индекс загрязнения воды в агломерации колеблется от 0,71 (река Алабуга) до 1,73 (река Тар).

Гипсоносные толщи развиты на территории Западного фланга Восточного участка Ноокатского месторождения. Здесь также активные процессы сернокислотного выщелачивания производят большое количество сульфатно-кальциевой воды в слое, содержащем сульфидную минерализацию.

Перечень основных процессов, создающих гидрогеологическую обстановку:

- гидрогеохимические и санитарно-технические процессы. Эти процессы образуются сбросом неочищенных сточных вод шахт, рудников и карьеров в поверхностные воды, тем самым вызывая химическое, физическое и биологическое загрязнение;
- дренирование и осущение водоносных горизонтов. В этом процессе происходит нарушение взаимосвязи подземных вод с поверхностными, а также изменение структуры системы подземных вод;
- взаимодействие дренажной системы с существующими грунтовыми водами.

Жители южного региона Кыргызстана используют подземные воды в основном для питьевых и бытовых нужд, и их качество в целом приемлемое. Однако в последние годы увеличилось загрязнение питьевой воды.

Расчет индекса загрязнения речных вод показывает, что эти значения являются обобщенными. Минерализация воды в ручьях и увеличение в них количества вредных веществ - свидетельствует о том, что идет влияние деятельности предприятий по разработке нерудных месторождений.

3.5. Воздействие деятельности нерудных предприятий на земельные ресурсы южного региона Кыргызстана

Горный сток, оседание земель, эрозия горных пород и выбросы загрязняющих веществ оказывают разрушительное воздействие на природные ресурсы Земли.

Непрерывная и интенсивная добыча полезных ископаемых нарушает естественный природный баланс и вызывает землетрясения, селевые потоки, песчаные бури, снегопады и техногенные оползни, а также изменения рН подземных вод, загрязняет фтором, фосфором, серой и углекислотой.

Отмечается, что при добыче песчано-гравийной смеси для производства щебня, песка и гравия наибольшее внимание должно уделяться районам интенсивного потребления строительного сырья населением. Так как каждый производственный объект имеет свой экономический доход, который определяется его местонахождением, возможным спросом его продукции. Это правило распространяется на большинство строительных материалов, за исключением облицовочного камня, цемента, гипса, минеральной ваты, стекла [77].

Анализ технико-геологических, экономических и минералогических условий традиционной эксплуатации полезных ископаемых показывает, что добычу месторождения песчано-гравийной смеси для производства щебня, гравия, песка можно отрабатывать открытым способом. Это связано с тем, что глубина залегания этих месторождений колеблется от 0 до 15 м, а цены на них невысоки.

Однако большинство месторождений гипса, ангидрита и известняка можно добывать подземным способом с высокой рентабельностью. Эти отложения в основном осадочные и располагаются на глубине от 50 до 400 метров. При этом собственные затраты гипсового сырья выше затрат гравия или песка и толщины слоя, а мощность пластов достигает 5-20 метров.

На недра оказзывается воздействие при открытых работах в виде нарушения ландшафта местности чашами карьеров, при подземном способое - образование пустот в недрах.

Добыча из карьеров строительных материалов достигает почти 100%. Добыча полезных ископаемых в карьере осуществляется техническими средствами: 1) снятие вскрышных пород; 2) установка буровой установки для отвода поверхностных вод; 3) добыча полезных ископаемых. 4) формирование отвалов, накопленными при переработке руды.

Все эти мероприятия вызывают значительные изменения рельефа. По данным Ф.И.Тютюнова "формы рельефа, возникающие при разработке нерудных материалов, а также обработке, расчистке подразделяются на денудационные (карьеры, траншеи, канавы), аккумуляционные (внешние отвалы, высыпи, дамбы) и денудационно-аккумулятивные (внутренний дренаж). Пустые породы, карьеры, дамбы, мосты, насыпи и впадины вызывают образование вскрышных отвалов пустой породы из-за накопления сыпучих полезных ископаемых и строительных материалов. Подземная добыча ведется шнековым, камерным и традиционным способами, состоящими из шахтных стволов и штолен. В среднем на тысячу тонн руды добывается от 100 до 115 кубометров материалов [98]. Обломки горных пород загрязняют окружающую среду, а также нарушают почвенный слой.

Нарушения разработкой месторожденний приводят к уничтожению деревесно-кустарниковой растительности, пойменных лесов, повреждению или полного уничтожения травяного покрова, перемешивание и загрязнение почвенно-растительного покрова горюче-смазочными материалами, буровым

шламом, а также сточными водами от жизнедеятельности рабочих карьера. Производственные площадки имеют относительно маленькие площади, но из-за продолжительности эксплуатации отрицательное влияние его на окружающую среду увеличивается и в некоторых случаях возможно прировнять к техногенным нарушениям.

На отведенных участках под промплощадки обычно располагается горная техника и оборудования, так же объекты хранения ГСМ или даже малые АЗС, санитарно-бытовые помещения, в том числе бани, душевые, столовые, инжереные коммуникации.

Площадь нарушения почвенно-растительного покрова в горнорудных районах велика, особенно при открытого способа разработки. При разработке нерудных месторождений, она колеблется от сотен квадратных метров до нескольких тысяч квадратных метров и более при строительстве подъездных дорог.

Транспортные сообщения вносят большой вклад в уничтожение природы. Они способствуют ухудшению состояния почвы и растительности, ухудшению структуры и качества почвенно-растительного слоя, удалению имеющихся древесно-кустарниковых пород.

Строительство основных и подъездных дорог связано с временным отчуждением из сельскохозяйственного или иного участка. Однако, чтобы построить простейшую дорогу шириной 4 метра, длиной 2,5 км дороги требуется один гектар территории. Например, маршруты геологоразведочной экспедиции требует строительство дорог протяженностью десятки и сотни километров на нетронутой экосистеме, в некоторых случай. До месторождения строились две трассы: одна — кратчайшая, другой — для периодов распутицы или половодья.

Большая часть дорог, построенных геологоразведочными службами и организациями проложена на землях покрытые лесом и лесостепных районах. Продолжительность их эксплуатации колеблется от одного сезона до нескольких лет.

Строительство геологических дорог сопровождается отрицательными негативными изменениями на поверхности земли: вырубкой леса, уничтожением травяного покрова и кустарников, деградацией гумусового слоя почвы и др.

На участках освоения нерудных полезных ископаемых образуются борозды, где процесс вегетации замедляется из-за затруднения регенерации растений. Эрозия почвы происходит интенсивнее, потому что борозды служат каналами для стока дождевой воды, а разрушенные земные поверхности легко подвергаются к ветровой эрозии.

3.6. Воздействие деятельности нерудных предприятий на биоресурсы южного региона Кыргызстана

Биологическое разнообразие, биоресурсы, в том числе почвенный покров создают необходимое условие для функционирования экосистем и устойчивое экологическое состояние, необходимые для жизнедеятельности человека и развития страны. Сохранение экологической обстановки экосистемы региона вносит вклад в социально-экономическое развитие и достижение Целей устойчивого развития, включая снижение уровня бедности.

В рамках достижения Целей устойчивого развития вопросам сохранения и восстановления экосистем, рационального лесопользование, борьбы с опустыниванием и деградацией земель, прекращения процесса утраты биоразнообразия уделено особое внимание в ЦУР №15.

Биоразнообразие означает разнообразие живых организмов во всех его проявлениях: от генов до биосферы. Вопросам изучения, использования и сохранения биоразнообразия стало уделяться большое внимание после подписания государствами в 1992 году Конвенции о биологическом разнообразии. Кыргызская Республика присоединилась к Конвенции о биологическом разнообразии в 1996 году, в 2005 году подписала Картахенский протокол по биобезопасности и в 2015 году — Нагойский протокол

регулирования доступа к генетическим ресурсам и совместного использования на справедливой и равной основе выгод от их применения к Конвенции о биологическом разнообразии [65].

Отрицательное воздействие горнодобывающей промышленности, в том числе освоение нерудных месторождений на биоразнообразие, начинается на стадии геологического поиска полезных ископаемых. Геологическая разведка правило, производится и непосредственно ископаемых, как осуществляется на девственных территориях не подвергшихся техногенной трансформации. На этом этапе основными факторами воздействия являются отчуждение территорий природных ландшафтов, увеличение доступности удаленных угодий с последствием увеличение преследования на широкий круг представителей животного и растительного мира и усиление шумовых воздействий, установление фактора беспокойства животного мира. Кроме того, в зависимости от технологии разведки, возможно загрязнения окружающей среды буровыми шламами, выбросами загрязняющих веществ, уничтожением лесных массивов и в целом природного ландшафта. А на стадии освоения и разработки месторождения сохраняются все вышеуказанные факторы, но масштабы их воздействия на окружающую среду многократно возрастают, появляются.

Технологический процесс разработки нерудных месторождений является источником шумового воздействия экосистему, в том числе на флору и фауну. Интенсивность внешнего шума зависит от типа оборудования, объекта работ, сейсморазведочных работ и удаленности от территории разработки. В процессе эксплуатации внешний шум возникает при работе механических агрегатов, автотранспорта.

Потенциальными источниками шума вблизи проектируемых участков являются работающее горнодобывающее оборудование и транспорт. Интенсивность внешнего шума и его напряженность для экосистемы зависит от типа применяемого оборудования, режима работы.

Природный шум дождя, нежный успокаивающий шелест листьев, убаюкивающее легкое завываные ветерка, журчание лесного ручья, приятное щебетание птиц, нежный плеск воды, шум волн всегда положительно воздействовали на людей. Они расслабляют, снимают стресс и наполняются положительной энергией.

С другой стороны, при разработке нерудных месторождений может отрицательно сказать на состояние животного мира из-за увеличения беспокойства (физическое присутствие, преследование, нарушение цикла размножения и вскармливания, освещение, шум, вибрации и т. д.), отравлением или накоплением вреднях или опасных веществ при потреблении органических отходов.

Отмечается, что некоторые животные (волки, лисы, мелкие млекопитающие, копытные) склонны адаптироваться, если этот фактор становится постоянным или миграция становится невозможным. Например, горный козел, у которого нет другого выбора, известен тем, что укрывается ночью и обычно не беспокоится о присутствии человека. Эти животные очень легко адаптируются и могут привыкнуть к присутствию человека без каких-либо негативных последствий.

Человек находящийся в запыленном воздухе может подвергаться внешнему и внутреннему воздействию пылевых частиц. Проникая через потовые и сальные железы частицы пыли закупоривают поры, затрудняя их работу. Попадание пылинок в глаз вызывает воспалительный процесс в слизистой оболочке. Работники нерудных компаний подвержены риску профессионального заболевания (пневмонии) из-за длительного воздействия пыли. Наиболее частым и тяжелым видом пневмонии является силикоз, который вызывает нарушения и изменения не только в легких, но и в ряде важных органов и систем организма человека: нервной и сосудистой системы, системе кровообращения и других [40].

На основе изучаемого анализа статистических данных было установлено, что выше 70% заболеваний местных жителей, связанных с освоением нерудных материалов, таких как: цемент, кирпич, керамика и теплоизоляционные материалы, связаны с заболеваниями внутренних органов, а именно дыхания, включая в основном профессиональные заболевания – пневмония, рак и силикоз.

Уровень шума от 20 до 30 децибел (дБ) практически безвреден для человека, это нормальный фоновый шум. Допустимый уровень шума составляет примерно 80 дБ; неприятное ощущение возникает при уровне шума 80-90 дБ.

Некоторые люди теряют слух даже после кратковременного воздействия относительно низких уровней звука. Постоянное воздействие громких звуков может повлиять не только на слух, но и на другие вредные эффекты — звон в ушах, головокружение, повышенная утомляемость.

Шум очень негативно влияет на нервно-психическое функционирование организма. Болезненные нервно-психологические заболевания выше у людей, работающих в шумных условиях, чем у людей, работающих в нормальных шумовых условиях. Шум вызывает расстройства сердечно-сосудистой системы. Специалисты считают, что шум может быть источником повышенного давления.

Для неэкранированных источников падение громкости составляет около 3 дБ при удвоении расстояния, а падение пиковых уровней звука составляет около 6 дБ. Поэтому средний объем постепенно уменьшается с увеличением расстояния. На расстоянии до двухсот метров от источника звука звук быстро затухает; по мере увеличения расстояния звук постепенно уменьшается.

Уровни шума различных технических средств, используемых в горных работах, приведены в табл. 3.14.

Таблица 3.14 – Уровень шума, создаваемого двигателем*

Тип активности	Уровень звука (дБ)
Автотранспорт	90
Бульдозер	91

Экскаватор	92

^{*}Источник: составлена автором

Увеличение интенсивности шума сверх природного уровня у человека приводит к повышению утомляемости, снижению умственной активности и при достижении 90-100 дБ к постепенной потере слуха.

Технологические процессы, осуществяляемые на территррии месторождения глины является источником шумового воздействия, влияющего на здоровье людей, непосредственно вовлеченных в производственный цикл. Интенсивность внешнего шума зависит от типа оборудования и удаленности от рабочего места. Во время проведения работы внешний шум создается при работе механических устройств.

Прозводственое пространство при разработке нерудных материалов в основном открытое, рядом нет зданий, сооружений и высоковольтных линий электропередач.

Как правило, вблизи производственных объектов компании нет высоковольтных линий элетропередач (ВЛЭ).

Анализ полученных данных показывает, что все предприятия, занимающиеся переработкой нерудных материалов, оказывают негативное влияние не только на здоровье работников предприятия в близлежащих населенных пунктах, но и на среду обитания местного биоразнообразия.

Заключение по главе 3

Анализ состояния переработки нерудных материалов на территории южного региона Кыргызстана показывает, что исследуемая территория обладает значительными ресурсами, разработка которых оказывает прямое и косвенное воздействие на окружающую среду и жизнь живых организмов, среди источников воздействия выявлены: на территрории Ошской области 441 предприятия, занимающихся разработкой нерудных материалов которые

включают в себя - 94 предприятий занимающихся песчано-гравийной смеси, 48 предприятий разработкой суглинка, 16 предприятий разработка песка, 283 других предприятий разрабатывающих — гранит, известняк, гипс и т.п; на территории Джалал-Абадской области 101 предприятий, занимающихся разработкой нерудных материалов, которые включают в себя — 41 предприятий занимающихся песчано-гравийной смеси, 29 предприятий разработкой суглинка и 31 других предприятий разрабатывающих — гранит, известняк, гипс и т.п.; на территории Баткенской области 79 предприятия, занимающихся разработкой нерудных материалов, которые включают в себя — 26 предприятий занимающихся песчано-гравийной смеси, 11 предприятий разработкой суглинка, 15 предприятий разработка песка, 27 других предприятий разрабатывающих — гранит, известняк, гипс и т.п.

За период исследования отобрано и проанализировано порядка 45 проб из источников предприятий которые занимаются освоением нерудных материалов.

Инструментальные исследования выбросов по фракционному составу пыли проводились с применением фильтра АФА с размерами пор 0,3-0,5 мкм, продолжительность отбора проб от 5 до 20 мин (в зависимости от интенсивности пылевыделения) со скростью 20 л/мин, а измерение моссовой концентрации взвешенных частиц, выбрасываемых в единицу времени проводили с помошью гравиметричесвих исследований, результаты коотрых показали, что более 10мкм составляет составляют 62,5%, одна треть выделяемой пыли размером менее 10 мкм (37,5%) и размером менее 2,5 мкм составляет 15,63%.

При выемочно-погрузочных работах вскрышной породы в атмосферу выбрасывается неорганическая пыль, содержащая 70-20% кремния. При проведении технологических операций – погрузке песка на конвейер, пересыпке, погрузке на транпорт, хранении на складе преобладающая доля частиц пыли составляет более 10 мкм или 57,71%.

ГЛАВА 4. ПУТИ СНИЖЕНИЯ ЗАГРЯЗНЕНИЙ И РАЦИОНАЛЬНОГО ПРИРОДОПОЛЬЗОВАНИЯ НЕРУДНЫХ МЕСТОРОЖДЕНИЙ ЮЖНОГО РЕГИОНА КЫРГЫЗСТАНА

4.1. Обоснование выбора метода по снижению выбросов нерудных предприятий

Проблемы рационального использования природных ресурсов и охраны окружающей среды смогут эффективно решены с учетом классификации экологических требований к разведке и разрабтоке месторождений нерудных материалов в зависимости от географического положения, плотности населения, степени использования земельных участков, климатических условий, масштаба разработки и ценности ресурсов освоения.

Основным требованием по охране окружающей среды предприятий, производящих нерудные материалы, является выполнение ряда мероприятий по снижению вредного воздействия этого производства на окружающую среду:

-разработка и внедрение технологий добычи и переработки нерудного сырья с низкими потерями и безотходностью;

-переход в замкнутую систему водоснабжения горнодобывающих предприятий, частично ее использующих;

-рациональоне использование земель, с целью снижения загрязнения воздуха рудниками, карьерами;

-восстановление продуктивности земель и последующей передаче сельскому хозяйству.

Одной из основных задач рационального природопользования является поддержание адаптивных условий существования живых организмов, особенно человека.

Еще одной большой проблемой оптимизации природопользования является получение из природы необходимого сырья в нужном количестве, качестве и разнообразия.

Для обеспечения устойчивого природопользования важно, чтобы отрасли не мешали друг другу в производстве жизненно важных продуктов с минимальными отходами.

Мероприятия по снижению и предотвращению выбросов загрязнения пылеватыми частицами атмосферного воздуха, предусматривает прежде всего, производство и освоение нерудных полезных ископаемых на карьере непосредственно за счет снижения вредных и ядовитых газов в основном при работе двигателей внутреннего сгорания.

Необходимо при этом, принять меры и способы по снижению выбросов загрязняющих вредных веществ в целях охраны атмосферного воздуха и обеспечения нормальных условий труда технического персонала. т.е.:

- -своевременный и качественное обслуживание оборудования;
- -сокращение сроков работы транспорта, благодаря конструктивным решениям;
 - -сокращение сроков работы двигателя на холостом ходу;
 - -исправленное техническое состяние оборудование и техники;
- правильный выбор вида топлива, типа двигателя, режима работы и нагрузки;
 - -квалификация персонала;
 - -хорошее питание персонала.

Соблюдение этих мер поможет избежать ситуации, когда уровень загрязняющих веществ в воздухе превышает пороговые значения.

Мероприятия по защите населения от выброса химических примесей и физического воздействия загрязнителей атмосферного воздуха. Земляные работы, внутренние откосы, переливные емкости, защита почвы и пыли

выполняются опрыскивателями с помошью поливооросительной автомашины. Эффективность пылеподавления составляет 85%.

Используя гидроорошение значительно уменьшает загрязнение воздуха снижает нагрузку прилегающей территории.

Результаты анализа воздействия объектов в приграничной зоне нерудных южного региона Кыргызстана показывают, что нормативы улучшились, так как большинство объектов не взаимодействуют с поселения и очень вдали от жилых районов, а анализ уровня загрязняющих веществ на границе СЗЗ показал отсутствие превышений нормативных показатетей, как по физического воздействия, химическим примесям, так ПО уровню И рекомендуется регулярный контроль технологического процесса. Своевременное планирование производства и техническое обслуживание существующих машин. Соблюдение и контроль технологии производства, техники безопасности при освоении нерудных месторождений, позволит избежать от нештатных ситуаций и сверхнормативных выбросов, предотвратить превышения ВВ гигиенических нормативов санитарно-защитной зоны.

Мероприятия принеблагоприятных метеорологических условий. Приземное загрязнение воздуха нерудных месторождений на территории южного региона Кыргызстана является результатом выбросов от оборудования и транспортных средств и сильно зависит от погодных условий. Концентрации загрязняющих веществ в воздухе могут быстро увеличиваться, если атмосферные условия благоприпятствуют накоплению загрязняющих веществ на поверхности атмосферы. Задача состоит в том, чтобы предотвратить периоды с высоким уровнем загрязнения.

Неблагоприятные погодные условия, такие как пыльные бури, гололед, штормовой ветер, туман, штиль, обычно наблюдаются при разработке месторождений полезных ископаемых в изучаемом регионе. Наблагоприятные погодные условия влияет на нормальный режим разработки нерудных месторождений.

Любой перечисленный неблагоприятный фактор может привести к аварийным ситуациям, угрожающим жизни обслуживающего персонала и наносящим ущерб окружающей среде. Поэтому в случае неблагоприятных погодных условий (по данным НМУ) планируется принять меры по снижению концентрации вредных веществ в приземных слоях атмосферы:

-ограничить перемещение и использование определенного оборудования в зоне добычи нерудных материалов;

-ограничить или запретить погрузочно-разгрузочные работы, при которых в атмосферу выбрасывается большое количество пыли;

-предусмотреть в сухую и ветреную погоду дополнительное орошение участков добычи.

Эти мероприятия носят организационно-технологический характер и не вызывают значительных затрат, не снижают производительность труда.

Источники воздействия на поверхностные и подземные воды. В близи преобладающей части нерудных предприятий на южном регионе Кыргызстана поверхностные воды текут в непосредственной близости от месторождений, где горнодобывающая деятельность оказывает непосредственное влияние на качество поверхностных вод.

Деятельность может косвенно влиять на качество поверхностных вод, загрязняя подземные воды: подземные воды могут быть затронуты во время использования; загрязнение поверхностных вод нефтепродуктами в результате случайного пролива масел при работе машин и механизмов.

В связи с особенностью технологических процессов, не обеспечивающих образование промышленных стоков – риск загрязнения подземных и поверхностных вод в поверхностных карьерах сведен к минимуму.

Особенностью растительного мира южного региона Кыргызстана характерно для пустынь Северного полушария с суровыми природными условиями, такими как засушливость климата, резкие перепады температур, большая маловодность и высокая влажность почвы. Травяной покров

разряженный, находится в зеленом состоянии в период март-апреле, выгорает в конце мая.

Среди растений широко распространены шиповник, таволга, жимолость, можжевельник, боярышник, которые достигает высоты 0,6 метра. Растительность на исследуемых территориях состоит в основном из ксерофитовых, в том числе однолетних, многолетних и полукустраниковых растений.

Растительный покров в зоне разботки нерудных материалов Южного региона Кыргызстана подвергается антропогенным нарузкам и изменяют растительности, В результате снижают продуктивность структуру растительности, нарушают структуру сообществ и влияют на биологическое разнообразие природных экосистем. Скорость изменения структуры растительности зависит от мощности воздействия разработки месторождения.

Производство работ и освоение на объектах в основном строительных материалов сопровождается образованием и распространением пыли, что в последующем приводит к высокому запылению атмосферы внутри и снаружи рассматриваемых производственных помещений а также за ее пределами. Вредные химические соединения и вещества выделяются при освоении и добыче, транспортировке и измельчении, перемешивании нерудного сырья с водой, а также формовании, при сушке и обжиге. На всех этапах этого процесса образуется пыль, при этом наибольшую опасность предтавляют мелкодиперсные частицы размерами от 0,3 до 5 микрон.

В современной мировой практике видно что, выбор и внедрение наилучших технологий обеспыливания атмосферной среды (как производственной, так и внешней) должен базироваться в основном, прежде всего, на научно-теоретическом обосновании и описании всех процессов загрязнения воздуха выбрасываемой пылью и уменьшения или снижения пылевого загрязнения. В настоящее время имеется или существует несколько

таких научно-теоретических подходов, поэтому мы выбрали на данном этапе исследования, наиболее приемлемый метод.

На основании сделанного анализа научно-практических исследований по выбору оптимальных технологий обеспыливании воздуха показал, что, разрабатывая критерии и рекомендации по совершенствованию процесса обеспыливания особое внимание следует уделить основным теоретическим подходам, базирующися на использовании оптимизации данного процесса и предпалагающее, что эффективность зависит от выбора технологии (средств и способов) обеспыливания при его устремлении к максимуму.

Все известные на данный момент, современные методы и виды обеспыливания делятся в основном на три типа:

- 1) механическая технология очистки пыли смыванием или сдуванием, засасыванием различными методами и механизмами;
- 2) смешивание и дробление материалов со связующими глинистыми и клеящими разными добавками для получения в конечном итоге покрытия, с высокими эксплуатационными и устойчивыми характеристиками;
- 3) обработка всей поверхности или частично пропитка связующим материалами, или химическими соединениями.

Механическое удаление или снижение пыли не устраняет главную причину образования пыли на участке.

Недостатком при смешивании с клеящими соединениями и веществами является сложность химико-технологической обработки.

Недостатком различных используемых растворов солей и других соединений является короткий промежуток действия (6-8 дней) и низкая скорость при схватывании поверхности.

Работа персонала включает в себя перемещение нерудных материалов, погрузку на самосвалы и доставку до места назначения.

При транспортировке нерудных материалов существует три основных вида пыления: сдувание с помощью механизма пыли, исходящая от

поверхностей добываемой горной массы, который переносится конвейерными лентами, автомобилем и железнодорожным транпортом; образование пылеватых частиц из-за постоянной просыпи горной массы из транспортных средств; пыление дорог и площадок во время движения тяжелого автотранспорта из-за взметывания ветром и воздушными потоками мелко-разрушенному до пылевых фракций частиц горной массы.

Источники пыления в любом технологическом процессе связана со многими специфическими (резковыделенными) процессами:

-рыхление или разрушение массива горной породы и локальное планирование всей поверхности;

-наибольшее пыление при освоении нерудных месторождений, образуется в основном при геологическом бурении твердых пород;

- -взрывание (механическое разрушение горной массы);
- -черпание эксковатором взорванной горной массы;
- -погрузка количество образуемой пыли на территории зависит от влажности сырья и высоты падения, а также производительности эксплуатируемой машины;
 - -транспортировка полезного ископаемого;
 - -дробление (с помощью техники) горной массы;
 - -сдувание (ветром) пыли с поверхности уступов, отвалов, складов и т.п.

Интенсивность пылевыделения при транспортировке пород, движении транспорта по открытым дорогам составляет десятки граммов в секунду. Например, плотность выброса пыли грузовика БелАЗ-540 составляет 12 г/с. Кроме того, движение по открытым дорогам составляет 70...80, что выбрасывает 4,5х10³ м³/с условного окиси углерода. Для снижения газообразования до предельно допустимого значения требуется 280...300 м³/с чистого воздуха.

Уровень загрязнения атмосферного воздуха в шахтах зависит от интенсивности пылегазовых выбросов различных технологических процессов,

количества энергии ветра, циркуляции воздуха, природно-климатических условий и способа пылегазоудаления.

Поэтому массовые характеристики рабочего места и его взаимодействие с окружающей средой должны быть решающим фактором при выборе методов, оборудования и технологии для борьбы снижения пылеватых частиц в атмосферу.

Другим аспектом исследования этого основного вопроса является анализ интенсивности конкретного источника пыли или оборудования для данного участка. При этом нам следует иметь как общие системы обеспыливания при освоении полезных ископаемых в целом, так и ключевые используемые в ней процессы. Удельные показатели ресурсоемкости современных методов и средств обеспыливания увеличиваются в десятки раз, т.е. имеется значительный резерв из совершествования. Независимо от характера межмашинного взаимодействия, горной массы или характеристик источника пыли разрабатывается множество методов и средств борьбы с пылью. Это в свою очередь также влияет на стоимость всех ресурсов на обеспыливание.

Анализ основных используемых на практике и в науке методов и инструментов для сегментации показывает нижеследующее:

-сухой метод обеспыливание применяется исключительно в таких случаях, когда невозможно применить водяное или другое обеспыливание;

-гидрообеспыливание (орошение), а также эффективное рациональное комбинация использования сухого обеспыливаиня является более дешевым методом (способом) борьбы с пылью и за счет меньшего количества набора оборудования, в основном сокращения количества стадий (этапов) обеспыливания;

-условиями, при ограничении применения гидропылеочистки, являются усовершенствованный метод и технологический процесс, свойства горной массы и отрицательная температура атмосферы (применение или использование гидропылеочистки в отрицательных температурных условиях значительно

снижает резервную производительность системы пылеулавливания [69; 89; 62; 60].

Современный анализ пылеулавливания показывает, что при заданных методах обеспыливания за счет качественной оптимизации ограниченного числа всех процессов и компонентов в итоге можно добиться к значительной экономии природных ресурсов и сводятся к следующему:

-завесы и их виды (воздушно-водяные);

-аспирация (из-под зонта и др.) и последующая технология очистки воздуха (сухой, комбинированной) и утилизация пылеватых частиц;

-подавление пыли разными методами (подавлением в эжекторе или с рециркуляцией);

-связывание (вяжущими материалами) пыли.

Движение автотранспорта в карьерах, обуславливает выброс пыли, а также газов от ее двигателя внутреннего сгорания. Взаимодействие колес с дорогой, сдува материала, нагруженного в кузов автомашины приводит к выделению пылеватых частиц.

Общее количество пыли, выбрасываемой горными машинами, можно выразить следующим образом [66].

$$Q = \frac{C_1 \cdot C_2 \cdot C_3 \cdot C_6 \cdot N \cdot L \cdot C_7 \cdot q_1}{3600} + C_4 \cdot C_5 \cdot C_6 \cdot q_2' \cdot F_0 \cdot n \tag{4.1}$$

здесь C_1 – коэффициент, учитывающий среднюю вместимость транспорта. C_2 – коэффициент, учитывающий среднюю скорость движения транспорта;

С₃ – коэффициент, учитывающий состояние дорог;

 C_4 – коэффициент, учитывающий профиль поверхности материала на платформе и определяемый как соотношение F_W/F_o , где F_W – фактическая поверхность материала на платформе. Значение C_4 колеблется в пределах 1,3-1,6 в зависимости от крупности материала степени заполнения платформы;

F_о – средняя площадь платформы;

С₃ – коэффициент, учитывающий скорость обдува материала, которая определяется как метрическая сумма скорости ветра и обратного вектора средней скорости движения транспорта;

С₆ – коэффициент, учитывающий влажность поверхностного слоя материала;

N – число ходок (туда и обратно) всего транспорта в час;

L – средняя протяженность одной ходки в пределах карьера, км;

 q_1 — пылевыделение в атмосферу на 1 км пробега при C_1 = 6, C_2 =1, C_3 = 1, принимаемая равным 1450 г;

 q_2' — пылевыделение с единицы фактической поверхности материала на платформе Γ/M^2 , $q_2' = q_1'$;

п – число автомашин, работающих в карьере;

 C_7 – коэффициент, учитывающий долю пыли, уносимой в атмосферу, и равный 0,01.

Улучшение условий труда на открытых горных разработках велись и ведутся по следующим основным направлениям: аэрация карьеров, борьба с пылью и газами технологических процессах добычи и переработки минерального сырья.

Обеспыливание орошением. В настоящее время вода используется для борьбы с пылью при добыче полезных ископаемых. Однако удельный расход воды на увлажнение теоретически обоснован.

Для обеспыливания производства, широко примяется и используется орошение водой, после которого значительно уменьшается количество пыли в воздухе (атмосфере). Однако нужно учесть, что при температуре используемой территории выше 25 градусов C^0 и относительной влажности его ниже 50%, влага испарится быстро (через 20 минут после полива), а количество пыли в уличном воздухе превышает предельно допустимые показатели.

Термодинамическая ценность раствора, используемого для уменьшения пыли, зависит от количества частиц, т.е. в зависимости от концентрации раствора меняются свободная энергия, химические и потенциальные величины.

Изменение этого значения изменяет температуру, давление и поверхностное натяжение раствора. Взаимодействие между молекулами растворенного вещества и поверхностным слоем различно.

Рисунок 4.1. - Специальная оросительная машина, подающая воду со скоростью до 20 км/ч*

*Источник: составлен автором

Пылеподавляющий состав не испаряется, не смывается дождем или грязью, устойчив к ультрафиолетовым лучам и почвенным микроорганизмам, не требует специального оборудования. Оросительные машины могут использоваться для обработки больших площадей. Капли можно размещать на грейдерах и грунтовых катках. Обработку проводят на скорости 20 км/ч.

Взаимодействие между молекулами определяется степенью их молекулярного (атомного) взаимодействия, и поэтому взаимодействие растворенных частиц (молекул) на разных по соотношению уровнях в поверхностной части слоя жидкости совершенно различно. Молекулы

используемого растворителя в жидкости в свою очередь могут притягиваться и соответственно отталкиваться друг от друга. Его можно определяеть радиусом активной молекулы. Молекулярные взаимодействия частиц на разных границах изучаемого раздела фаз в жидкостях сильно различаются. Если сумма всех сил жидкости, действующих на конкретную молекулу, равна нулю, она будет тяготеть к жидкости, как на границе раздела воздух-растворитель.

Расстояние между молекулами в поверхностном слое немного больше, чем расстояние в глубине жидкости. Тогда сила притяжения частиц на той же горизонтальной линии слоя на поверхности несколько больше соответствующей силы отталкивания.

Если предположить, что поверхностное натяжение действует на поверхности жидкости, то сила тяжести частиц направлена перпендикулярно этим поверхностям и сила уменьшается.

Эти силы межмолекулярного притяжения действуют в том же поверхностном слое и уменьшают размер поверхностного слоя.

Поверхностное натяжение максимально у поверхности жидкости и постепенно уменьшается до нуля на глубине, равной радиусу действия молекул.

Водные растворы хлористого кальция и других гигроскопических солей, а также органические вяжущие, такие как сульфатный спирт, битум, нефть и топочный мазут, испытывают на пылеобразование на открытых дорогах в различных климатических условиях. Однако ввиду отсутствия теории механизма пылесвязующие вещества не получили широкого применения в дорожном пылеподавлении.

Гигроскопические свойства соли используются для снижения температуры замерзания и скорости испарения водных растворов, а также для контроля пыления нерудных осадков при более низких температурах. Когда соль растворяется в воде, давление паров раствора уменьшается. По мере увеличения концентрации раствора давление паров раствора уменьшается. Это влияет на

температуру замерзания раствора: снижение температуры замерзания раствора приводит к замедлению испарения.

Когда водный раствор замерзает, сначала выделяется вода в виде кристаллов, увеличивая концентрацию раствора и понижая температуру замерзания. Испарение воды увеличивает концентрацию раствора и снижает скорость испарения. Этот процесс продолжается до тех пор, пока температура е не достигнет значения, при котором твердый лед и раствор образуют твердый раствор.

Свойства водорастворимых гигроскопичных солей, поглощающих влагу из воздуха, были использованы для предотвращения взрывов пыли в шахтах. Для этого орошались рабочие стенки водным раствором.

В основе метода обеспыливания горных работ гигроскопичными солевыми растворами лежит поддержание влажности дорожного покрытия за счет извлечения влаги из воздуха.

При поливке дорожного покрытия водным раствором гигроскопичных солей обмен веществ происходит по определенному закону - диффузии газов.

Термодинамические значения раствора, находящегося в равновесии с другими растворами, являются минимальными значениями при постоянной температуре и объеме.

Значительное уменьшение количества осадков может временно уменьшить запыленность воздуха на дорогах. Однако в то же время вода, глинистые, песчанные и другие агрегаты смываются с дорожного покрытия, размывая дорожное покрытие и создавая неровности.

Дорожный полив требует значительных затрат и имеет ряд серьезных недостатков. Частый полив поверхности повреждает дорожное покрытие и соответственно снижает его эксплуатацию, в конечном итоге приводит к преждевременному разрушению и износу материальных компонентов автотранспорта, в то же время удлинению тормозного пути а также

значительному снижению скорости. И затраты на техническое обслуживание растут.

При $q=0^\circ$, то смачивание полное. Если $q>90^\circ$, смачивание очень затруднена. При $q=180^\circ$ смачивание отсутсвует. Контактный угол можно увеличить, предварительно нанеся адгезив на сухую подложку. При нанесении на сухую поверхность адгезив сначала впитывается и, таким образом, изменяет поведение поверхности подложки.

Очевидно, что если не учитывать влияние структуры адгезива, то анализ эффекта охлаждения будет неполным и ошибочным. В связи с коренным изменением представлений о молекулярном строении полимерных материалов, в том числе о связях органического происхождения, гидратацией считают диффузию крупных молекул на твердой поверхности со сплошным твердым поверхностным слоем. Суть этого процесса заключается в том, что при намокании твердой поверхности вода изменяет молекулярную структуру полимера, что требует дополнительных затрат энергии на превращение полимера из соединения с низким молекулярным выходом в высокомолекулярный материал [34].

Винил-акрил-виниловая эмульсия. Большинство полимерных продуктов, используемых для стабилизации и укрепления грунта, представляют собой сополимеры на основе винилацетата или акрила. Большинство синтетических полимеров лучше всего работают на новых поверхностях, поэтому рекомендуется сначала выровнять дорогу. После использования эмульсии вода испаряется, а изделие затвердевает. Полимер обычно напыляют не менее двух раз. Благодаря этому укрепленный слой устойчив к холоду (сохраняет эластичность и не снижает температуру до -30°C), надежно защищает грунт от агрессивных сред, обладает высокой эластичностью и выветривается от ветра и дождя. Сполимеры могут быть получены в виде порошка (рис. 4.2).

Рисунок 4.2 – Расход профилактической эмульсии*

Примечание: 0.5 л/м^2 — слева; 1 л/м^2 — справа.

*Источник: составлен автором

Существуют химические методы (как утверждают производители), удаляющие пыль на 8-10 лет после одного применения (обработка поверхностей штабеля, хвостохранилища). Грунт размягчают и перемешивают с эмульсией, а с помощью катков на поверхность укладывают дополнительную пленку достаточной толщины, позволяющую сопоставить требуемую прочность грунта с цементом. Твердое покрытие держится несколько лет и действует как барьер от дорожной пыли. Раз в год необходимо опрыскивать поверхность дополнительными препаратами. Если на подготовленной таким образом дороге образовались рытвины, достаточно покрыть ее смесью эмульсии, вещество прилипнет к окружающему грунту и станет частью дороги. Существуют также

изделия из натуральных органических полимеров, которые используются на автомобильных дорогах. Эти полимеры нетоксичны и полностью биоразлагаемы. Другими словами, после окончания срока действия полимера грунт возвращается в исходное состояние. Некоторые дождевальные установки могут отработать за смену площадь до 10 га.

Обеспыливание пылесвязующим средством РНХ-1021. В современных научно-исследовательских работах ведущих российских ученых описано новое и эффективное на сегодняшний день пылесвязующее средство, предназначенное для закрепления и снижения пылящих поверхностей при освоении и обогащении нерудных месторождений, а также подробно изложены его преимущества в применении. В результате проведённых нами испытаний данного метода показано, что пылесвязующее вещество РНХ-1021 является совершенно новым, высокоэффективным, экологически менее безопасным средством для снижения пыли при освоении нерудных месторождений [88]. К основной положительной характеристики РНХ-1021 можно привести следующие: при использовании эффективное связывание пылеватых частиц на срок 15-20 дней и больше при первой обработке; образование на поверхности используемого участка гибкой, прочной пленки и устойчивой к работе всех видов тяжелой транспортной техники, устойчивое воздействие на атмосферные осадки; низкий уровень безопасности для здоровья человека и окружающей среды; легкость в приготовлении и использовании рабочего раствора и при нанесении на пылящую поверхность участка, технология обработки данной смеси, аналогична орошению поверхности технической водой [37].

В поверхности дорог были опробованы различные концентрации растворов хлорида натрия и тринатрийфосфата. Перед обработкой растворами различной концентрации полотно автодорог готовили по определенной процедуре:

-очистка дороги от грязи и мусора с помощью грейдера или механической щетки;

-ликвидация ям;

-устройство дорожных насыпей, путем разрезания дорожного материала на глубину 20 см по краю отвала грейдера;

-орошение дорожного покрытия;

-подготовка дороги для доставки песка (крупнозернистого) на образование толщины 3 см.

-выравнивание песка грейдером с перемещением материала до 10 м.

Раствор хлористого кальция готовили в виде однородного раствора и затем заливали в слой песка в количестве 1,5-2 дм $^3/$ м 2 методом механического орошения, средним объемом 24 м 3 .

Общая протяженность эффективного действия растворов концентрации хлористого кальция 5 -10 % и соотвественно концентрации тринатрийфосфата 0,5% и 1% интенсивности движения 60-65 машин/час. Расход раствора (6,0-6,5)10-3 м³/м³ составила 6-7 дней.

Результаты замеров запыленности воздуха с подветренной и наветренной стороны показали, что в течение 5-6 дней изменяется уровень пыли в пределах фона карьера.

Снижение содержания пыли в воздухе проезжей части выражается следующим уравнением в зависимости от прошедшего времени.

$$N = N_{\Phi} e^{a\tau}, \tag{4.2}$$

где N_{φ} - фоновый уровень запыленности при переработке, мг/м³. а - величина, учитывающая влияние внешних факторов во времени, t - время действия воды в минутах.

Внутренняя транспортная нагрузка при температуре 15-27°С, интенсивности движения на внутрикарьерных автодорогах от 60 до 66 машин в час, $N_{\varphi}=2.8~{\rm Mr/m^3},~\alpha=0.015.$

Растворы со следующими концентрациями показали свою эффективность в снижении выбросов пыли при движении автотранспорта по горным дорогам: 10% хлорид кальция, 0,5% тринатрийфосфат; хлорид кальция и 1%

тринатрийфосфат. Выбор правильного решения по снижению дорожной пыли позволяет значительно снизить запыленность с поверхности и значительно улучшить условия окружающей среды.

На территории нерудных месторождений вода не хранится. Вода питьевая используется только для вахтовиков и привозится рабочим ежедневно.

Техническая вода для пылеподавления — забоя, внутрикарьерных дорог, рабочих площадок рекомендуется привозить с базы поливомоечной машиной каждый день.

Накопление пыли и минералов проводится днем при положительной температуре, т.е. каждый день (для южного региона Кыргызстана 170-10=160м³).

При открытых разработках важно использовать материалы с высоким содержанием влаги, низкой летучестью при выветривании, низкой температурой застывания и устойчивость при атмосферных осадках (дождь, снег). Эти параметры рекомендуется при использовании реагентов пылеподавления, отвечающий всем вышеперечисленным требованиям. PHX-2021 используется для закрепления поверхностей отвалов, дробилке и на автодорогах, где идет освоение нерудных месторождений.

В производстве данное средство считается – эффективным, недорогим и по экологически чистым обеспыливателем отношению другими горнодобывающей промышленности. Выпускается в концентрации от 4:1 до 1:1 и используется на местах в зависимости от площади и условий обработки. Рекомендуемый расход вышеуказанного реагента 2,0-3,5 л/м 2 и больше, в зависимости ОТ плотности, географического расположения, типа обрабатываемой поверхности, климатических условий окружающей среды. Концентрация раствора могут варьироваться от конкретного субъекта или ситуации. Порошок также полностью растворимо в воде при естетственном температуре и имеет кинетическую вязкость от 70 до120 сСт (или мм²/с) при температуре 20°C, что намного облегчает приготовление и последующее использование данного раствора. Наносить РНХ -2021 можно из автоцистерны

(на базе автомобиля), оборудованных обычными ротационными спринклерами, распылительными форсунками и стационарными спринклерами. Обработанная поверхность участка хорошо впитывается, если при обработке образуется равномерный слой. Смесь устраняет необходимость разравнивания дорожного полотна и останавливание движения горнотранспортных машин. После нанесения смеси на обрабатываемую поверхность площади порошковое вяжущее средство образует эластичный и равномерный слой, устойчивый к климатическим и техногенным воздействиям. Полученная пленка (после нанесения смеси) обладает высокой прочностью и устойчивостью, не разрушается под воздействием транспортного средства в течение 15-20 дней и более, обеспечивает что В свою очередь высокие И эффективные эксплуатационные характеристики в зависимости от внешней нагрузки обрабатываемого покрытия.

Одного нанесения смеси достаточно для прочного покрытия поверхности, но при необходимости (влияние внешних факторов) последующие нанесения можно сократить до 5-8 дней в условиях интенсивной работы техники и сильной запыленности. По желанию потребителя-заказчика возможно изготовление вышеназванного пылесвязующего материала в осенне-зимний период или весной при температуре минус 15°C и ниже.

Проведенные нами исследования показывают высокую эффективность, экономически целесообразность и экологичность данного раствора для борьбы с пылеподавлением при добыче и освоении нерудных полезных ископаемых. К основным преимуществам вышеуказанного раствора относятся:

-эффективное подавление пылеватых частиц на 15-20 дней и более при первой обработке;

-на поверхности площади создает эластичный и устойчивый слой, способный противостоять внешнему воздействию тяжелых транспортных средств и атмосферных осадков; -безопасно для организма человека, окружающей природной среде и технике;

-легко при приготовлении и использовании рабочего раствора на запыленных поверхностях, технология орошения аналогична поливу искусственной водой;

Следующий способ по пылеподавлению является применение диспергационный способ получения смеси.

Пылеподавление при освоении нерудных месторождений пенным способом. Преимущество данного метода по сравнению с промывкой обычной водой заключается в том, что пенный способ охватывает большую поверхность земли при более низких скоростях и потока жидкости. За счет увеличения заданной площади поверхности, времени реакции можно повысить реальную эффективность процесса при этом увеличить количество фильтрующей смеси, используемого на единицу добываемого сырья.

Преимущество использования пенного метода в том, что его в основном применяют для удаления пылеватых частиц при отрицательных температурах.

Анализ исследования пенных методов пылеудаления при освоении нерудных месторождений выявил следующие преимущества использования пены перед другими методами гидрообеспыливания:

-расход воды в 1,5-2,0 раза меньше чем, при орошении, расход воды;

-повышение влажности атмосферы в то же время пылящей поверхности;

-эффективность метода обеспыливания, за счет подавления мелкодисперсных пылеватых частиц наиболеенежелательных и вредных для здоровья человека, особенно работающих непосредственно на данном участке.

В результате взаимодействия частицы пыли полностью поглощаются пенным пузырьком. Процесс смачивание и увлажнения оказывает эффективное и интенсивное влияние на взаимодействие (процесс адсорбции), что увеличивает сплошное натяжение на стыке фаз, участвующих в смачивании. На процесс смачивания главным образом влияют концентрация раствора пенообразователя,

а также его смачиваемость пылеватых частиц. Высушенные частицы пыли высвобождают пузырьки смеси и остаются в атмосфере или оседают непосредственно на поверхности пузырьков и препятствуют их взаимодействию с вновь взвешенными пылеватыми частицами. Поверхностные активные вещества в пенобразующих жидкостях имеет важное средство контроля их поверхностного покрытия и смачиваемости орошаемых твердых поверхностей. При непосредственном контакте частицами пыли с поверхностными активными веществами пены происходит процесс адсорбции на поверхности площади и уменьшают разность полярностей пыли и смеси на границе раздела пыльжидкость-пыль. Он создает межмолекулярные сильные взаимодействия между пузырьками жидких и твердых частиц. Частица пыли прочно прикрепляется к поверхности используемого пузырька, а затем начинается взаимодействие или процесс диффузии смеси по поверхности пылеватых частиц и заканчивается, тогда, когда жидкость смачивает всю поверхность пылеватых частиц. Вторая фаза взаимодейстия вызвана существующим эстественным поверхностным давлением, которое существенно снижает поверхность жидкости минимальных размеров. Пузырьковая пропитка эффективна, когда пузырьки смеси поглощают частицы и не разлагаются при контакте с пылеватыми частицами пыли, образуя при этом капли воды и сливаются с частицами пыли. Для этого в производстве рекомендуется использовать преимущественно плотную пену, тем самым максимально воздействовать на пыль, выбрасываемый при добычи нерудных полезных ископаемых.

Процесс очистки пыли пенным способом должен соответствовать нижеследующим требованиям:

- экономическая эффективность метода;
- необходимость использования пенообразующего раствора с низким поверхностным натяжением;
- при взаимодействии пыль должна быть тонкодисперсной;

Если эффективность данного процесса пылеулавливания не соответствует требованиям рабочих мест в производственной площади, то следует использовать эффективные способы рассеивания пылевой дисперсии, вызывающий дальнейшее уменьшение устойчивости системы, за счет активного взаимодействия.

Физическая сущность выброса пыли при добычи нерудных полезных ископаемых состоит в активном выносе пылевых частиц в приземный слой атмосферы. Рекомендуется использовать пенный способ для снижения процесс пылеобразования с пузырьками смеси, которые эффективно могут отделить частицы мелкодисперсной пыли друг от друга и в естественных условиях перенести их на определенный промежуток расстояния над подстилающей поверхностью.

физических моделей сушествующих процесса борьбы Анализ загрязнением атмосферы показывает, что во взаимодействии пылевых частиц и пузырьков (аэрозолей) В основном участвуют: внутренние, вязкие, молекулярные и электрические силы, которые действуют противоположенно в зависимости от химических и физических свойств пыли и пузырьков. Контролируя весь процесс образования пылевых и пенных аэрозолей, можно научно определить состояние и характеристики передвижения и обеспечить эффективность и экономически целесообразность процесса пенообразования.

Глубина пропитанного слоя из расчета 1 л на 1 м 2 поверхности основания составляет до 30 мм, что достаточно для образования корки.

Покрытие автодорог с защитной эмульсией характеризуется быстротой формирования, устойчивостью к загрязнениям от резиновых покрышек, погодным воздействиям (в том числе осадкам) и долговременным эффектом. Ниже приведены сравнительные показатели различных методов обеспыливания территорий нерудных месторождений (табл. 4.1, рис.4.3).

Таблица 4.1 — Сопоставление методов обеспыливания территорий по разработке нерудных месторождений*

$N_{\overline{0}}$	Наименование	Стоимость	Норма	Срок	Цена
	метода	применяемой	расхода,	действия,	обеспыливания
	обеспыливания	технологии, на	л/м ²	сут	1000 м ² в сутки,
		1 т, сом			сом
1	Метод орошения	264	2,0	0,2	2 640000
2	Винил-акриловая эмульсия	14 220	0,5	45	158000
2	Раствор с концентрацией хлористого и тринатрийфосфата	15 580	2,1	30	247 301
3	Пенный способ борьбы	18 710	4,0	40	1 871 000

^{*}Источник: составлена автором

Согласно рис. 4.3 для эффективного обеспечения возможности расчета и энергоемкостного показателя, как контролирующих параметров винилакрилового метода обеспыливания атмосферы, прогнозирования эффективности, экономически целесообразности и работы технических устройств, позволит осуществлять выбор оптимальных технических средств реализации процесса обеспыливания воздуха акриловой эмульсией.

Рисунок 4.3 - Сравнительная эффективность методов обеспыливания*
*Источник: составлен автором

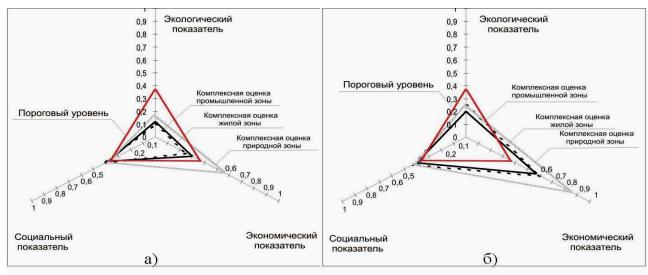
Основной задачей является выбор экономически приемлемой эффективной технологии выбросов. Приведенные снижения методы варьируются с учетом образуемых пылей, обеспыливания физикохимических показателей, размеров частиц, климатических условий и т.п.

4.2. Предлагаемые меры по регулированию природопользования на территории нерудных месторождений

Кыргызстан привержен к реализации Повестки дня ООН в области устойчивого развития к 2030 году. Эта цель отражена в национальной политике и отражена в Национальной стратегии развития Правительства КР на 2018-2040 годы, в программе "Единство. Доверие. Созидание" на период 2018-22 годы, за основу которых принят человекоориентированный подход [64].

Индустриализация и промышленное развитие являются двумя важными составляющими сотрудничества Евразийского экономического союза. План

мероприятий по основным направлениям производственной кооперации в рамках Евразийского экономического союза предусматривает углубление производственной кооперации и развитие различных уровней деятельности по следующим направлениям:


-внедрение альтернативных продуктов, включая местное производство и углубление производственной кооперации;

-увеличение экспорта готовой продукции.

-создание инновационных производств и модернизация существующих производств.

В связи с этим добыча полезных ископаемых признана одним из приоритетных направлений развития экономического положения нашей страны, что влияет на все остальные показатели социального благополучия и внедряет эффективные производственные процессы, тем самым улучшая экологическую обстановку в регионе.

Как показано на рис. 4.4, на результат выбранного решения влияют социальные, экономические и экологические критерии, а устойчивость используемого участка зависит от сбалансированного взаимодействия всех этих элементов. Взаимодействие этих компонентов определяется уровнем принятия решений. По мере развития одной части может развиваться и другая. Для развития сбалансированной общей системы необходимо принимать правильные решения относительно выбора социальных приоритетов и обращать внимание на достигнутый уровень экономической активности, т.е. условия, которые непосредственно связаны с качеством жизни, индустриальное развитие, получение экономического эффекта и т.д.

Желательность	Отметки на шкале желательности
Очень плохо	0,00 - 0,20
Плохо	0,20 - 0,37
Удовлетворительно	0,37 – 0,63
Хорошо	0,63 - 0,80
Очень хорошо	0,80 - 1,00

Рисунок 4.4 — Схема общей оценки качества окружающей среды в разрезе добычи нерудных месторождений*

- а) до проведения дополнительных мероприятий по охране природной среды;
- б) после проведения дополнительных мероприятий по охране природной среды.

Разработка нерудных материалов является частью этой индустриализации, что позволит получать высококачественные строительные материалы и строить здания, соответствующие признанным стандартам. Это делает нас конкурентоспособными, обеспечивает гарантии между странами-партнерами.

Основная проблема заключается в выборе оптимального варианта разработки, который обеспечит устойчивость природных условий и соответствующий социальный статус всего населения.

Дополнением к развития предлагается:

-поддержка экспорта строительных материалов (цемент, камень, гранит, гипс и др.);

^{*}Источник: составлена автором

-устранение существующих препятствий (принятие международных стандартов отечественной лабораторной продукции), механизм поддержки экономического развития (обеспечение экспорта) и нефинансового поддержка (логистика) таможенная инфраструктура, информационная, маркетинговая поддержка и др.);

-автоматизация таможенных операций с помощью Единой автоматизированной системы, создание центра управления деятельностью для обеспечения прозрачности осуществления таможенного процесса, анализа действий, нарушающих таможенные правила, и получения информации о деятельности таможенных центрах, оперативная работа соответствующих органов в таможенной зоне, ведение работы по обеспечению безопасности инфраструктуры пунктов пропуска.

В Кыргызстане постепенно увеличивается жилищный фонд, несмотря на положительную демографическую динамику, количество квартир на одного жителя растет незначительно.

Задача обеспечения безопасной и доступной транспортной системой заключается в ограниченности ресурсов. Наблюдатеся износ технических средств, который является частью выработки ресурса и нуждается в обновлении. В последние годы существуют факторы, влияющие на рост дорожнотранспортных происшествий, показывающие прямую связь с увеличением количества транспортных средств, их динамических характеристик и плотности движения.

В рамках устойчивого местного развития нам необходимо следующее:

-поддержка строительства доступного социального жилья для людей с ограниченным доходом, согласно условиям социального найма;

-постепенный переход на экологически чистые технологии;

-в рамках реализации проекта «Безопасный город» технический и программный комплекс должен охватывать основные источники задымления и реализация онлайн мониторинга за выбросами;

-сохранение природных ресурсов, являющиеся местообитанием для исчезающих видов;

-применение принципа озеленения соответствующих экологическим требованиям и нормам санитарно-защитных зон;

-реализация комплексных программ по совершенствованию экологоэкономических методов местного развития;

-реализация политики устойчивого управления отходами для предотвращения расширения новых полигонов и сокращения площади существующих полигонов;

-развитие экономически эффективной инфраструктуры по переработке и утилизации промышленных отходов;

-популяризация методов по восстановлению разрушенных земель, их рекультивация.

4.3. Рекультавация разрушенных земель при освоении нерудных месторождений

Согласно законодательству, в каждом конкретном случае направление рекультивации зависит от существующих экономических, финансовых и природных условий местности, где расположен поврежденный ландшафт, особенностей новейших технологий (эквивалентность соседних экосистем, экологические угрозы) и главное, хозяйственного использования деградированных территорий [67].

Реабилитация карьерно-отвальных комплексов направлена на устранение негативного воздействия окружающей среды на природу и окружающий ландшафт. В этом случае выбирается самое простое решение. Решение — частичное восстановление нарушенной поверхности как средообразующего, покрытой зерновой растительности путем залужения ее посевами трав с частичным восстановлением лесных насаждений. Однако при выполнении таких

мероприятий возникли трудности, связанные с отсутсвием на территории гумусового субстрата, пригодного для воссоздания корнеобитаемого слоя в данном случае культивированный растительный покров не желал расти на техногенных грунтах даже после использования удобрений. Анализ показал, что требуемого гумусового слоя на данной площади недостаточно т.е. при проведении горнодобывающих работ обязательным условием является снятие, складирование и сохранение почвенного слоя для дальнейшей рекультивации этих участков [32; 23].

На основе полученного опыта были разработаны две технологические рекультивационные процедуры. Первый предполагает сложные восстановительные процедуры, в том числе создание плодородного слоя почвы необходимой толщины для создания необходимой корневой среды для будущих растений. Второй способ направлен на улучшение естественного процесса почвообразования путем подготовки основного слоя путем техногенного улучшения почвы физико-химическими методами (рыхлением, применение мелиорантов и др.).

В этих условиях весь цикл очистки (включая горнотехнический, мелиоративный и биологические этапы) является дорогостоящим и считается экономически нецелесообразным на национальном уровне.

Приоритетом выделено природоохранное направление рекультивации, целью которого является устранение вредного воздействия нарушенных ландшафтов на соседние территории, охрана нарушенных территорий, изменение этой среды, восстановление обезлесенных естественных лесов.

Метод гидромульчирование (гидропосев). Снижение эрозии почвы за счет укрепления почвы перед посадкой растительности, создав при этом укрытие для растительного слоя и других растений. Разжиженная мульча, смешанный со вяжущим, применяется на штабелях породных отвалов (отвалы, откосы участков дорог). В состав которого обычно входят: бумажный полуфабрикат (бумажное волокно), грибной навоз, растительные волокна (смола) и искусственные

синтетические полимеры (например, акриловые поверхностно-активные вещества и др.). В используемый смесь можно добавить растительные семена, удобрение биологического происхождения и красители (рис.4.5).

Рисунок 4.5 — Метод применения гидромульчирования перед рекультивацией поверхности земли*

а) мульча (порошок) на основе целлюлозы; *б)* гидромульчирование (орошение) откосов автодорог; *в)* гидромульчирование с добавлением растительного семена на поверхность породного отвала.

После нанесения данной смеси на поверхность обрабатываемой поверхности в течение месяца, раствор образует искусственный растительный слой или смолу, на которой выращенные растения удерживают поверхность почвы с развитой корневой системой. Технология использования гидроромульчирование заключается в том, что мульча (удобрения) смешивается с водой и в виде эмульсии (суспензии) наносят на палящую поверхность [110].

Для гидромульчирования могут применяться аэропланы, оснащенные мешалками и сложным инжекторным оборудованием, а также специализированная 2-4-осная техника (в т.ч. сочлененные) для разбрызгивания в которых устанавливаются: мощные водяные пистолеты, большие вентиляторы или распылители и шланги, с помошью которых можно распылять содержимое.

^{*}Источник: составлен автором

Основными характеристиками при использовании технологии гидромульчирования являются его простота применения, устойчивость (до 16 месяцев и вплоть до нескольких лет, если во время гидромульчирования не затрагивается растительный покров) и низкое влияние или порчи нижнего слоя грунта.

Недостатком данного метода является экономический фактор, за квадратный метр площади и особые условия его применения, которые включают в себя следующие:

-необходимость создания на местности откосов искусственных сооружений с целью предотвращения вредных явлений;

-отработанные отвалы добычи, из которых невозможно получать новый материал, отдельно складываются и засыпаются поверхносным слоем (например, гравием или щебнем), покрываются поверхностным слоем гумуса.

Перед восстановлением поврежденного участка рекомендуется отработать технологии гидромульчирования для подготовки участка к рекультивации.

Сложность решения проблемы рекультивации связана с тем, что технологические процессы имеют весьма значимый региональный характер с экологической точки зрения. Ландшафт активно меняется и определенным образом реагирует на любое внешнее воздействие. Характер этих изменений требует индивидуального подхода к планированию восстановительных мероприятий на каждом объекте.

Заключение по главе 4

Анализ научных исследований по выбору лучших передовых технологий обеспыливания показывает, что особое внимание следует уделить подходу, использующему различные критерии для улучшения процесса обеспыливания, и самое главное - эффективности пылезащиты. Он также определяет необходимые критерии для выбранных методов для максимального снижения запыленности окружающей среды

Приведенные методы обеспыливания варьируются с учетом образуемых пылей, физико-химических параметров, размера частиц и климатических условий.

Сравнительный анализ показывает эффективность параметров винилакрилата для обеспыливания воздуха, а определение их эффективности позволил выбрать лучшее техническое оборудование для процесса снижения запыленности на территории разработки нерудных материалов.

На выбранное решение влияют социальные, экономические и экологические критерии, а от сбалансированного взаимодействия всех этих частей зависит устойчивость используемой территории.

Для развития сбалансированной системы необходимо принимать правильные решения относительно социальных приоритетов и обращать внимание на достигнутый уровень экономической активности, т.е. условия, которые непосредственно связаны с качеством жизни и индустриальным развитием региона, реализацией эффективных средств защиты окружающей среды и т.д.

Предложенная рекультивация карьерно-отвальных комплексов преследовала цель устранить их негативное экологическое влияние на прилегающие природные и селитебные ландшафты. В данном случае было выбрано самое простое решение, которое заключалось в частичном восстановлении ландшафта путем залужения ее посевами травосемей и реконструкцией лесных насаждений для стабилизации поврежденного участка.

Основными характеристиками технологии гидромульчирования являются простота применения, долговечность (до 18 месяцев или вплоть до нескольких лет, если не затрагивается растительный слой) и отсутствие порчи гумусового слоя.

Перед рекультивацией поврежденного участка рекомендуется проводить технологию гидромульчирования.

Сложность решения проблемы реконструкции связана с тем, что технологические процессы имеют весьма значимый региональный характер с экологической точки зрения. Природный ландшафт активно меняется и определенным образом реагирует на любое внешнее воздействие. Характер этих изменений требует индивидуального подхода к планированию восстановительных мероприятий на каждом конкретном объекте.

ОСНОВНЫЕ ВЫВОДЫ И РЕКОМЕНДАЦИИ

1.Изучение показало, что рассматриваемый регион Кыргызстана обладает значительными ресурсами, и их развитие предполагает принятие во внимание экологических аспектов природопользования. Географические условия являются главным фактором при освоении нерудных месторождений и служат условием распространения выбросов в окружающую среду.

2.Подобраны оптимальные методы с помощью ГИС-технологий и выявлены специфика техногенно-нагруженных территорий в зоне воздействия разработки нерудных материалов. Технический процесс освоения нерудных полезных ископаемых является причиной большей части выбрасываемой пыли в атмосферу, тем самым загряет воздух.

3. Освоение нерудных месторождений сопровождается выделением отдельных территорий из аграрного сектора, нарушением геоморфологического строения, режима течения поверхностных вод, а используемые машины и агрегаты являются источниками физического, химического загрязнений – которые отрицательно влияют на ареал распространения растений и животных, воздействует на близлежащие территории, сопровождающиеся вредным воздействием шумов, вибраций, дымовых и газовых выбросов.

4.Проведенный анализ по обзору существующих научных работ в области разработки нерудных материалов южного региона Кыргызстана показал, что данная проблема еще до конца не изучена, и данное обстоятельство требует комплексного рассмотрения этой проблемы, а географические условия являются главным фактором выбора технологии освоения нерудных месторождений, служат условием распространения выбросов в окружающей среды и основой выбора экологический решений по снижению выброса.

5.Инструментальные исследования проводились по определению фракционного состава пыли с исползьованием фильтра $A\Phi A$ — размерами пор 0,3-0,5 мкм, временем отбора проб 5-20 минут показали, что частицы размером

более 10 мкм ссотавляют 62,5%, одна треть выделяемой пыли размером менее 10 мкм (37,5%) и размером менее 2,5 мкм составляет 15,63% от общего количества пыли. При разработке щебня преобладет пыль размером до 10 мкм (67,04%), при пересыпке с конвейра в бункер на долю преобладающих частиц до 10 мкм приходится 68,81% пыли.

6.Сравнительный анализ, проведенный нами, показывает эффективность и экономически целесообразность параметров винил-акрилового метода обеспыливания воздуха, эффективность и экономичность работы технических устройств, позволил выбрать оптимальную технологию процесса обеспыливания акриловой эмульсией.

7.B был целях защиты окружающей среды предложен метод рекультивации земель, основанный на простом решении по восстановлению разрушенных территорий с использованием гидромульчированной технологии путем внесения экологически чистых травяных смесей для стабилизации поверхностей обусловленные нарушенных почвы, региональными особенностями каждого конкретного объекта.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- **1.Абдурасулов, И.А.** Водообеспечение и очистка сточных вод в Кыргызстане [Текст] / И.А. Абдурасулов. -Б.: Илим, 2004. -448 с.
- **2.**Агроклиматические ресурсы Ошской области Киргизской ССР. Гидрометеоиздат. Ленинград, 1975. -216 с.
- **3.Аматова, Н.С.** Оценка эффективных минерально-сырьевых агроресурсов фосфорных удобрений в Южном регионе Республики [Текст] / Н.С.Аматова, С.Аматов, М.А.Дуванакулов // Известия КГТУ им.И.Раззакова. -Б., 2013. -№28. -С. 100-103.
- **4.Аматова, Н.С.** Промышленная оценка месторождений фосфоритовых руд мезо-кайнозойского периода в Жалал-Абадской области [Текст] / Н.С.Аматова, С.Аматов, М.А.Дуванакулов // Известия КГТУ им.И.Раззакова. –Б., 2014. -№33. -С. 164-165.
- **5.Ананьева, О.В.** Профессиональные заболевания: Универсальный справочник [Текст] / О. В. Ананьева, М.Г. Дрангой, Е.В. Герасина. -Воронеж: Научная книга, 2017. -600 с.
- **6.Андрианов, Е.И**. Оборудование для выгрузки, траснпортировки и обработки уловленной пыли. Обзорная информация сер. XM-14 ЦИНТИХИМНЕФТЕ-МАШ [Текст] / Е.И. Андрианов. –М., 1987. -187 с.
- **7.Арсентьев, А.И.** Беседы о горной науке / А.И. Арсентьев, В.А. Падуков. -Л.: Наука, 1981. -160 с.
- **8.Астахов, С.А.** Природные ресурсы и национальное богатство [Текст] / С.А. Астахов / Монография. -М.: Энергия, Институт энергетической стратегии, 2010. -220 с.
- **9**. Атлас Киргизской ССР. Том І. Природные условия и ресурсы [Текст] / Под ред. М.Адышева. -Фрунзе, 1987. -158 с.

- **10.Ахманов,** Г.Г. К методике изучения и оценки техногенных месторождений [Текст] / Г. Г. Ахманов, Н. Г. Васильев // Отечественная геология. -М., 1996. -№ 10. -С. 3-7.
- **11.Балаев,** Л.Г. Инженерно-геологические аспекты рационального использования и охраны геологической среды [Текст] / Л.Г. Балаев, Л.Д. Белый, Ф.В. Котлов. -М.: Наука, 1981. -240 с.
- **12.Бастан, П.П**. Теория и практика усреднения руд [Текст] : монография / П.П. Бастан, Е.И.Азбель, Е.И.Ключкин. -М.: Недра, 1979. -254 с.
- **13.Белозерцева, И.А.** Загрязнение атмосферы [Текст] / И.А.Белозерцева, О.А.Матушкина // Экологически ориентированное планирование землепользования в Байкальском регионе. Байкальская природная территория. -Иркутск: ИГ СО РАН, 2002. -С. 31-37.
- **14.Берг, Л.Г.** Введение в термографию [Текст] / Л.Г. Берг. -М.: Наука, 1969. -396 с.
- **15.Борзунов, В.М.** Месторождения нерудных полезных ископаемых, их разведка и промышленная оценка [Текст] / В.М. Борзунов. -М.: Недра, 1969. -335 с.
- **16.Бортникова, С.Б.**, Геохимическая оценка потенциальной опасности отвальных пород Ведугинского месторождения / С.Б.Бортникова, О.Л.Гаськова, Н.А.Присекина // Геохимия. -М., 2010. -№ 3. -С. 295-310.
- **17.Бурдзиева, О. Г.** Динамика трансформации природной среды горного региона под влиянием горнодобывающей деятельности: на примере Республики Северная Осетия-Алания [Текст] : автореф. дис. ... канд. геогр. наук: 25.00.36 / О. Г. Бурдзиева. -Астрахань, 2011. -22 с.
- **18.Веденина, В.П.** Гидрогеология СССР [Текст] : Том 43 / В.П. Веденина, Е.И. Токмачев. -М.: Недра, 1972. -272 с.
- **19.Волохов, М.И.** Обеспыливание и контроль запыленности воздуха на рудниках [Текст] / М. И. Волохов. -Алма-Ата: Наука, -1976. -150 с.

- **20.Голик, В.И.** Горное дело и окружающая среда [Текст] / В.И.Голик, В.И.Комащенко, И.В.Леонов. -М., 2020. -210 с.
- **21.Губанов, И.Д.** Снижение пылевыделений в рабочую зону и окружающую среду от узлов перегрузки извести [Текст] : дис. ... канд. техн. наук: 05.26.01 / И.Д. Губанов. -Волгоград, 2010. -138 с.
- **22.Гусев, В.А.** Алгоритм построения иерархической дендрограммы кластер-анализом в геолого-геохимических приложениях [Текст] / В.А.Гусев, И.К.Карпов, А.И.Киселев // Известия академии наук СССР, Серия геологическая. -М.: Наука, 1974. -№ 8. -С. 61–67.
- **23.Дороненко, Е.П.** Рекультивация земель, нарушенных открытыми разработками [Текст] / Е. П. Дороненко. -М.: Недра, 1979. -263 с.
- **24.**Дуванакулов, М.А. Современные методы анализа экологических проблем по разработке нерудных материалов [Текст] / М.А. Дуванакулов // Наука, новые технологии и инновации Кыргызстана. -Б., 2023. №9. -С. 35-38.
- **25.**Дуванакулов, М.А. Жаратылышты пайдалануунун теориялык маселелери жөнүндө [Текст] / М.А.Дуванакулов, А.К.Култаева // Наука. Образование. Техника. -Ош: КУУ, 2022. -№ 1. -С. 194-198.
- **26.**Дуванакулов, М.А. Освоенность нерудных полезных ископаемых на территории южного региона Кыргызстана [Текст] / М.А.Дуванакулов, А.К.Култаева, Т.Г.Панфиленко // Актуальные проблемы проведения геолого-геофизических исследований. Материалы II Международной научно-практической конференции. -Краснодар, 2024. -С. 271-278.
- **27.**Дуванакулов, М.А. Современные возможности освоения нерудных материалов на территории южного региона Кыргызстана [Текст] / М.А.Дуванакулов, А.К.Култаева // Наука, образование, техника. -Ош: КУУ, 2023. -№1 (76). -С 182-186.
- **28.Дуйшеев, О.Д.** Роль горнодобывающей отрасли в развитии экономики республики [Текст] / О.Д.Дуйшеев // Проблемы горной отрасли в Кыргызской Республике. -Б., 2012. -С. 21-38.

- **29.Едигенов, М.Б.** Перспективы освоения месторождений полезных ископаемых Кыргызстана и Казахстана [Текст] / М.Б.Едигенов, Ш.Э.Усупаев, А.О.Маралбаев, П.Б.Туркбаев // Ежемесячный научно-технический и производственный журнал «Горный журнал». -М., 2016. -№8. -С. 10-16.
- **30.Еремин, Н.И.** Неметаллические полезные ископаемые [Текст] / Н.И.Еремин. -М., 2004. -259 с.
- **31.Жук, П.М.** Система критериев для оценки экологической безопасности предприятий строительных материалов [Текст] / П.М. Жук // Academia. Архитектура и строительство. -М.: 2012. -№ 4. -С. 106-110.
- **32.Зайцев, Г.А.** Рекультивация фактор техногенного преобразования ландшафтов [Текст] / Г. А. Зайцев // Вопросы географии. -М.: Мысль, 1977. №106. -С. 104-112.
- **33.Ильин,** С.А. Открытый способ разработки месторождений: возможности и пути совершенствования [Текст] / С.А. Ильин, В.С. Коваленко, Д.В. Пастихин // Горный журнал. -М.: Руда и Металлы, 2012. -№2. -С. 37-40.
- **34.Ильченкова, А.А.** Снижение пылевой нагрузки на окружающую среду связыванием дисперсных материалов пылящих поверхностей на территории горных предприятий [Текст] : автореф. дис. ... канд. техн. наук: 25.00.36 / А.А. Ильченкова. -Санкт-Петурбург, 2005. -22 с.
- **35**.Инициатива прозрачности добывающей отрасли (ИПДО) в КР [Текст] / Протокол №22, 26.03.2015, Бишкек. https://keitiweb.wordpress.com/wp-content/uploads/2017/05/22.pdf
- **36.Исмаилов, Б.Т.** Охрана экосистем окружающей среды оптимизацией параметров открытой разработки минералов [Текст] / Б.Т. Исмаилов // Горный информационный-аналитический журнал. -М.: МГГУ, 2007. -С. 65-66.
- **37.** К вопросу защиты окружающей среды от мелкодисперсной пыли горных предприятий [Текст] / Г.В. Стась, С.З.Калаева, К.М.Муратова, Я.В.Чистяков // Известия ТулГУ. Науки о Земле. -Тула, 2019. -Вып. 1-С. 92-105.

- **38.Калабин, Г.В**. Горнопромышленный комплекс и природоохранные технологии [Текст] / Г.В.Калабин // Горный журнал. -М.: 2005. -№ 2. -С. 12-15.
- **39.Калдыбаев, Н.А.** Научно-прикладные основы комплексного освоения малых месторождений нерудных строительных материалов [Текст] / Н.А. Калдыбаев // Малышевские чтения: Материалы всероссийской научной конференции в 2-х т. Т.1. -Старый Оскол, 2013. -С. 390-396.
- **40.Карапата, А.П.** Профессиональные пылевые болезни легких [Текст] / А. П. Карапата, А. М. Шевченко. -Киев, 1980. -183 с.
- **41.Князева, В.П.** Экологические аспекты выбора материалов в архитектурном проектировании [Текст] / В.П. Князева. -М.: Архитектура, 2006. -296 с.
- **42.Кожогулов, Б.К.** Прогноз развития добычи и обработки природного камня в Кыргызской Республике [Текст] / Б.К.Кожогулов // Известия КГТУ. Б., 2014. -№ 33. -C. 266-268.
- **43.Комащенко, В.И.** Влияние деятельности геологоразведочной и горнодобывающей промышленности на окружающую среду [Текст] / В.И. Комащенко, К. Дребенштедт, В.И. Голик. -М., 2010. -356 с.
- **44.Копач, П.И.** Методология экологической оценки технологий при разработке месторождений полезных ископаемых [Текст] / П.И. Копач // ГИАБ (научно-технический журнал). -М., 2006. -№2. -С. 211-217.
- **45.Копач, П.И.** Разработана классификация методов экологизации технологий открытых горных работ [Текст] / П.И. Копач // ГИАБ (научнотехнический журнал). -М., 2009. -№10. -С. 322-332.
- **46.Кочуров, Б.И.** География экологических ситуаций: экодиагностика территории [Текст] / Б. И. Кочуров. –М.: Ин-т геогр. РАН, 1997. -132 с.
- **47.Кочуров, Б.И.** Геоэкология: экодиагностика и эколого-хозяйственный баланс территории [Текст] / Б. И. Кочуров. -М: Ин-т геогр. РАН, 1999. -86 с.

- **48.Кочуров, Б.И.** Экодиагностика и сбалансированное развитие [Текст] / Б. И. Кочуров. -М., 2003. -384 с.
- **49.Кулакова, Н.В.** Минеральная сырьевая база строительных материалов Киргизской ССР [Текст] : справочник / Н.В. Кулакова, Е.Н. Заярнюк. -Фрунзе: Илим, 1989. -477 с.
- **50.Култаева, А.К.** Кыргызстандын түштүк аймагынын климаттык шарттарын рекреациялык максатта баалоо [Текст] / А.К. Култаева // И.Арабаев атындагы Кыргыз мамлекеттик университетинин Жарчысы. -Б., 2014. -№1. 106-109 б.
- **51. Лопатин, К.И.** Проблемы геоэкологии [Текст]: моногр. / К.И.Лопатин, С.А.Сладкопевцев. -М.: МДВ, 2008. -260 с.
- **52.** Лужков, Ю.А. Оценка экологических последствий деятельности горно-промышленного комплекса: на примере Черемховского угольного бассейна в Иркут. обл. [Текст]: автореф. дис. ... канд. техн. наук: 25.00.36 / Ю.А.Лужков. -Иркутск, 2010. -19 с.
- **53.Макаров, А.Б.** Практическая геомеханика [Текст] / А.Б. Макаров. -М.: Горная книга, 2006. -391 с.
- **54.Малахов, С.Г.** О проблемах нормирования загрязнения почв и расчёта ПДВ веществ, загрязняющих почву [Текст] / С.Г.Малахов, Н.Б. Сенилов // Миграция загрязняющих веществ в почвах и сопредельных средах: Труды 5-го Всесоюз. совещания. -Л.: Гидрометеоиздат, 1989. -С. 72-79.
- **55**.Методические указания по оформлению и содержанию проекта нормативов предельно-допустимых выбросов в атмосферу (ПДВ) для предприятия» (утв. приказом Минэкологии и ЧС КР от 10.05.2005 № С232).
- **56.**Минерально-сырьевая база в условиях перехода к рыночной экономике Кыргызской Республики. -Б, 2000. -476 с.
- **57**. Минерально-сырьевая база Кыргызской Республики на рубеже перехода к рыночной экономике. -Бишкек: Наси, 1998. -231 с.

- **58**. Минерально-сырьевая база строительных материалов Киргизской ССР. Справочник. Фрунзе: Илим, 1989. -447 с.
- **59**. Минерально-сырьевые ресурсы Кыргызской Республики. Бишкек, 1999. -696 с.
- **60.Михайлов, В.А** Борьба с пылью на рудных карьерах [Текст] / В.А.Михайлов, П.В.Бересневич. -М: Недра, 1981. -261 с.
- **61.Мосейко, Т.И.** Минеральные ресурсы неметаллических полезных ископаемых Кыргызской республики: справочник [Текст] / Т.И. Мосейко, Н.В.Кулакова. -Б.: Наси, 1996. -394с.
- **62.Наливайко, В.Г.** Расчет эффективности пылеподавления мелкодисперсным дождеванием после массовых взрывов в карьерах [Текст] / В.Г.Наливайко // Борьба с опасными и вредными производственными факторами на горнорудных предприятиях. -М.: Недра, 1991. –С. 62-64.
- **63**.Научно-прикладной справочник по климату СССР. Серия 3, многолетние данные. Часть 1-6, выпуск 32. Киргизская ССР. Гидрометиздат Ленинград, 1989г. -176 стр.
- **64**.Национальная стратегия развития Кыргызской Республики на 2018-2040 годы. Указ президента от 31 октября 2018 года УП № 221.
- **65**.Национальный доклад о состоянии окружающей среды Кыргызской Республики за 2015-2018 годы. –Бишкек, 2020. -224 с.
- **66.Нургабылов, У.Ш.** Снижение пылевыделения при автомобильной транспортировке горной массы [Текст] / У.Ш. Нургабылов, М.Т. Жараспаев // Межвузовский сборник научных трудов «Инженерные аспекты экологических проблем Казахстана». -Алматы.: КазГЛСА, 2001. -С. 120-127.
- **67.**О рекультивации земель нарушенных в процессе пользования недрами [Текст] / постановления Правительства КР от 18 авг. 2017 года №517 // Норматив. акты Кырг.Респ. -2021. -6 с.
- **68**.Обоснование эколого-экономической оценки негативных последствий при закрытии горных предприятий [Текст] / [В.И.Комащенко, Ю.А.Боровков,

- А.Ф.Еналдиев и др.] // II Международная научная конференция. –Белгород.: Издательство БГУ, 2006. -С. 339-345.
- **69.Отделкин, Н. С.** Теоретические основы оценки потерь и защиты окружающей среды от пылеобразования при перегрузке и хранении сыпучих грузов в портах [Текст]: дис. ... д-ра техн. наук: 05.22.19 / Н.С.Отделкин. Нижний Новгород, 2008. -344 с.
- **70.Отчет** о геолого-поисковых работах Наукатской партии за 1983 г. Сост. Ворожкин И.Л., Митрофанов Е.А. и др. Том 1 текст 196с.
- 71. Отчет о поисковых работах в центральной части Алайского хребта (часть темы по договору № 94 МГРИ) 1951 г. Сост. Барсуков В.Л., Чудинов Ю.В. Том 1 текст 258с.
- **72.Отчет** о результатах поисково-сьемочных работ масштаба 1:50000 Ортотерекской ПСП, проведенных 1970 г.: Геологическое строение и полезные ископаемые междуречья Аксу-Афлатун. Сост. Гарапко И.В., Литовчак С.В. и др. Том 1, книга текст 219с.
- **73.Отчет** о результатах поисковых и поисково-оценочных работ на перспективных площадях распространения цветных мраморов, гипса, ангидрита, ракушечников и др. видов стройматериалов для обеспечения сырьем предприятий МПСМ Кирг.ССР и местной промышленности рес. за 1980-85 гг. Закиров Ш.С., Абдрахманов Х.Ф., др. Том 1 текст 201с.
- **74.Отчет** о результатах поисковых работ и обобщению материалов по полезным ископаемым в Чаткальском регионе, проведенных в 1981-85 гг. по работам Кассанской ГПП. Сост. Кириченко Г.И. Том 1 текст 318с.
- **75.Отчет** Чааратского поискового отряда по результатам работ за 1988-92 гг.: Поисковые работы на Чантлыташской площади. Сост. Деменко О.А. Книга 1 – текст – 171с.
- **76.Папичев, В.И.** Методология комплексной оценки техногенного воздействия горного производства на окружающую среду [Текст] : автореф. дис. ... д-ра техн. наук: 25.00.36 / В.И.Папичев. -М.: ИПКОН РАН, 2004. -44 с.

- 77.Пашкевич, М.А. <u>Исследование миграции загрязняющих веществ с</u> территории техногенных массивов Кольского полуострова [Текст] / М.А.Пашкевич, В.А.Матвеева, А.С.Данилов // Горный журнал. -М., 2019. -№ 1. -С. 17-21.
- **78.Певзнер, М.Е.** Недра необходимо использовать рационально [Текст] / М.Е. Певзнер. -М., ЭКО, 1985. -С. 91-103.
- **79.Певзнер, М.Е.** Рациональное использование минеральных ресурсов и охрана недр [Текст] / М.Е. Певзнер // Обз.инф. Сер. «Горно-химическая промышленность». –М.: НИИТЭХИМ, 1986. -С. 48-54.
- **80.Певзнер, М.**Е. Экология горного производства [Текст] / М.Е. Певзнер, В.П. Костовецкий. -М.: Недра, 1990. -235 с.
- **81.Певзнер, М. Е.** Рациональное использование минеральных ресурсов в современном недропользовании / М. Е. Певзнер // Горный журн. -М.: 2002. № 1. -С. 12-17.
- **82.Перельман, А.И.** Геохимия природных вод [Текст] / А.И. Перельман. -М.: Наука, 1982. -154 с.
- **83.Перельман, А.И.** Геохимия [Текст] / А.И. Перельман. -М.: Высш.шк., 1989. -528 с.
- **84.Попов, А.Н.** Инновационные технологии защиты водных объектов в горнопромышленных районах [Текст] / А.Н. Попов, В.А.Почечун, А.И. Семячков. -Екатеринбург: Институт экономики УрО РАН, 2009. -145 с.
- **85.**Промышленность КР [Текст] : Статистический сборник / Национальный статистический комитет. -Б.: Нацстатком, 2023. -97 с.
- **86.**Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе городских и сельских поселений [Текст] / постановление Главного государственного санитарного врача РФ от 31 мая 2018 г. №37 // Гигиенический норматив РФ ГН 2.1.6.3492-17. -2018. -35 с.
- **87.Сает, Е.Ю.** Геохимия окружающей среды / Е.Ю. Сает, Б.А. Ревич, Е.П. Янин. -М.: Недра, 1990. -335 с.

- **88.Семёнов,** Д.Г. Новое эффективное средство для борьбы с пылеобразованием при добыче и обогащении горных пород [Текст] / Д.Г. Семенов, Л.Р. Кутушева // Уголь. 2013. -№ 5 (1046). -С. 66-72.
- **89.Сергина, Н.М.** Установка обеспыливания для производства извести [Текст] / Н. М. Сергина, Е. А. Семенова // Проблемы охраны производственной и окружающей среды : сб. материалов и науч. тр. молодых инженеров-экологов. Волгоград, 2013. Вып. 5. С. 97-99.
- **90.**Совершенстование норм технологического проектирования открытых горных работ на Украине [Текст] / А.Г. Шапарь, П.И. Копач, В.Н. Романенко, Н.И. Голярчук // ГИАБ (научно-технический журнал). -М., 2009. -№8. -С.349-352.
- **91.Сонькин, Л.Р.** Синоптико-статистический анализ и краткосрочный прогноз загрязнения атмосферы [Текст] / Л.Р.Сонькин. -Л.: Гидрометеоиздат, 1991. -223 с.
- **92**. Синхронный термический и электронно-микроскопический методы и их возможности в изучении гипергенного минералообразования / Н. М. Боева, Н. С. Бортников, В. М. Новиков, А. Д. Слукин // Актуальные проблемы геологии, прогноза, поисков и оценки месторождений твердых полезных ископаемых. Киев: Академпериодика. 2012. -С. 121–122.
- **93.Стреляева, А.Б.** Анализ источников загрязнения атмосферного воздуха мелкодисперсной пылью [Электронный ресурс] / А. Б. Стреляева, Н.С.Барикаева // Интернет-Вестник ВолгГАСУ. 2014. № 3 (34). -С. 11.
- **94.**Строительные материалы: материаловедение [Текст] / [В.Г.Микульский, В.Н.Куприянов, Г.П.Сахарова и др.] -М.: Издательство Ассоциации строительных вузов, 2004. -536 с.
- **95.Тажетдинова, H.С.** Геоэкологическая оценка и контроль антропогенного воздействия при добыче минерального сырья [Текст] / Н.С. Тажетдинова, М.М. Иолин // Геология, география и глобальная энергия. -М., 2011. №2. -С. 235-341.

- **96.Теблоев, Р.А.** Защита окружающей среды при добыче руд в условиях рудников Северного Кавказа [Текст] : дисс. ... канд. техн. наук: 11.00.11 / Р.А. Теблоев. -Владикавказ, 1998. -130 с.
- **97.Тиленова,** Д.К. Гидроэкологическая ситуация в бассейнах рек южного Кыргызстана и пути ее улучшения [Текст] / Д.К. Тиленова // Вестник РУДН, серия «Инженерные исследования». -М, 2012. -№1. -С. 88-94.
- **98.Тютюнова, Ф.И.** Гидрогеохимия техногенеза [Текст] : монография / Ф.И. Тютюнова. -М.: Наука, 1987. -335 стр.
- **99.Уоллворк, К.Л.** Нарушенные земли [Текст] / К.Л.Уоллворк. -М.: Прогресс, 1979. -269 с.
- **100.Утехин, В.Д.** Первичная биологическая продуктивность лесостепных экосистем [Текст] / В.Д. Утехин. -М.: Наука, 1977. -146 с.
- **101.Филимонова,** Л.М. Оценка загрязнения атмосферы в районе алюминиевого производства методом геохимической съемки снежного покрова / Л.М. Филимонова, А.В. Паршин, В.А. Бычинский // Метеорология и гидрология. -М., 2015. -№10. -С. 75–84.
- **102.Филонов, А.В.** Экологические проблемы предприятий горнорудной промышленности [Текст] / А.В. Филонов, В.О. Романенко // Успехи современного естествознания. -М., 2016. -№ 3. -С. 210-213.
- **103.**Фурманова, Т.Н. Воздействие разработки месторождений по добыче общераспространенных полезных ископаемых на окружающую природную среду [Электронный ресурс] / Фурманова Т.Н., Назаренко Н.В., Петин А.Н.// Современные проблемы науки и образования. -М., 2012. -№ 6. —Режим доступа: https://science-education.ru/ru/article/view?id=7401
- **104. Фурманова, Т.Н.** Геоэкологическая оценка воздействия добычи общераспространенных полезных ископаемых на состояние окружающей среды (на примере белгородской области) [Текст]: дис. ... канд. геогр.наук: 25.00.36 / Т.Н. Фурманова /. -Белгород, 2015. -165 с.

- **105.**Хаванская, Н.М. Методические подходы к оценке устойчивости геосистемы к воздействию горнодобывающей промышленности [Текст] / Н. М. Хаванская // Вестник Волгоградского государственного университета. сер. 3. Экономика. Экология. -2011. Вып. 3, № 1. С. 254-257.
- **106.Холодняков, Г.А.** Малоотходные технологии открытой разработки месторождений полезных ископаемых [Текст] / Г. А. Холодняков, Д. Н. Лигоцкий. -Санкт-Петербург: Нац. минерально-сырьевой ун-т "Горный", 2015. -277 с.
- **107.Хохряков, А.В.** Рациональное природопользование при разработке месторождений полезных ископаемых [Текст] / А.В. Хохряков, С.П. Иванов. -Свердловск, 1987. -52 с.
- **108. Чантурия, В.А.** Перспективы устойчивого развития горноперерабатывающей индустрии России [Текст] / В.А. Чантурия. -М.: «Руда и металлы», 2008. -283 с.
- **109.Чодураев Т.М.** Ачык тоо-кен иштеринин айлана-чөйрөгө тийгизген таасирлерин изилдөөнүн усулдук негиздери [Текст] / Т.М. Чодураев, М.А. Дуванакулов // Ош мамлекеттик университетинин Жарчысы. Атайын чыгарылыш (1). -Ош, 2018. -7-10 б.
- **110.Чодураев Т.М.** Рекультивация земель основа сохранения и восстановления почвенного плодородия [Текст] / Т.М. Чодураев, М.А. Дуванакулов // Материалы семинара "V Матикеевские чтения". —Ош: ОшГУ. 2024. -С. 145-151.
- **111.Шапарь, А.Г.** Влияние экологических критериев эффективности освоения месторождений на выбор спсоба разработки [Текст] / А.Г. Шапарь, П.И. Копач // ГИАБ (научно-технический журнал). -М., 2002. №1. -С.124-129.
- **112.**Экологические проблемы при добыче нерудных строительных материалов в России [Текст] / Г.С.Курчин, Е.П. Волков, Е.В. Зайцева, А.К. Кирсанов // Современные проблемы науки и образования. -М., 2013. -№ 6. -С. 1-4.

- **113.**Экология горного производства [Текст] : учебник для студентов горных специальностей вузов / Г.Г.Мирзаев, Б.А.Иванов, В.М.Щербаков, Н.М.Проскуряков. -М: Недра, 1991. -319 с.
- **114.Duvanakulov M.A.,** Toktoraliev E.T., Nizamiev A.G. Stability of geosystems under the influence of the activity of nonmetallic materials on the territory of southern Kyrgyzstan / Central Asian Journal Of The geographical Researchers. –Chirchik, 2023. P. 48-56.
- **115.Mairam Abdullaeva,** Musabek Duvanakulov Phosphorius (v) Oxide Accerated Determination in Phjsphates With Monovalent NH⁴⁺, K⁺, NA⁺, H⁺ Cations / International Journal of Mechanikal Engineering / Vol.7 No. 1 (January, 2022) Part 2. -P .5361-5364
- **116.McKenzie, D.P.** (1972) Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109-158.